001008881 001__ 1008881
001008881 005__ 20230705203335.0
001008881 0247_ $$2doi$$a10.24435/MATERIALSCLOUD:4C-F0
001008881 037__ $$aFZJ-2023-02525
001008881 041__ $$aEnglish
001008881 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author$$ufzj
001008881 245__ $$aPd-doping of Bi₂Te₃ and superconductivity of Pd(Bi,Te)x from density functional theory
001008881 260__ $$bMaterials Cloud$$c2023
001008881 3367_ $$2BibTeX$$aMISC
001008881 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1688529597_32637
001008881 3367_ $$026$$2EndNote$$aChart or Table
001008881 3367_ $$2DataCite$$aDataset
001008881 3367_ $$2ORCID$$aDATA_SET
001008881 3367_ $$2DINI$$aResearchData
001008881 520__ $$aMaterials that can host Majorana zero modes gained a lot of attention in recent years due to the possibility to engineer topologically protected quantum computing platforms. Promising candidates are heterostructures of topological insulators and superconductors. Here we present density-functional-theory-based calculations for Pd-doped Bi₂Te₃ and Pd(Bi,Te)x (x=1,2) in order to shed light on the superconducting properties in the self-formed superconducting phase when Pd is deposited on top of the topological insulator Bi₂Te₃.This dataset accompanies a joint experiment/theory publication and publishes the related density functional theory calculations for:- relaxed geometries for Pd intercalation in the Bi₂Te₃ vdW gap- electronic structure of PdTe and PdTe₂ compared to alloy phases of Pd(Bi,Te) and Pd(Bi,Te)₂, collectively referred to as "xPBT"- calculations for the superconducting state of xPBT phases within the Kohn-Sham Bogoliubov-de Gennes method
001008881 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008881 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001008881 588__ $$aDataset connected to DataCite
001008881 650_7 $$2Other$$adensity-functional theory
001008881 650_7 $$2Other$$asuperconductivity
001008881 650_7 $$2Other$$atopological materials
001008881 650_7 $$2Other$$aMajorana
001008881 7001_ $$0P:(DE-Juel1)145420$$aWei, Xiankui$$b1$$ufzj
001008881 7001_ $$0P:(DE-HGF)0$$aRehman Jalil, Abdur$$b2
001008881 7001_ $$0P:(DE-HGF)0$$aAndo, Yoichi$$b3
001008881 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4$$ufzj
001008881 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
001008881 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b6$$ufzj
001008881 773__ $$a10.24435/MATERIALSCLOUD:4C-F0$$v2023.99
001008881 909CO $$ooai:juser.fz-juelich.de:1008881$$pVDB
001008881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001008881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b1$$kFZJ
001008881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
001008881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001008881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b6$$kFZJ
001008881 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008881 9141_ $$y2023
001008881 920__ $$lyes
001008881 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008881 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008881 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001008881 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
001008881 980__ $$adataset
001008881 980__ $$aVDB
001008881 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008881 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008881 980__ $$aI:(DE-82)080009_20140620
001008881 980__ $$aI:(DE-82)080012_20140620
001008881 980__ $$aUNRESTRICTED