001008905 001__ 1008905
001008905 005__ 20240226075519.0
001008905 0247_ $$2doi$$a10.48550/ARXIV.2208.14289
001008905 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02544
001008905 037__ $$aFZJ-2023-02544
001008905 1001_ $$0P:(DE-Juel1)157882$$aRüßmann, Philipp$$b0$$eCorresponding author$$ufzj
001008905 245__ $$aProximity induced superconductivity in a topological insulator
001008905 260__ $$barXiv$$c2022
001008905 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1688532991_5065
001008905 3367_ $$2ORCID$$aWORKING_PAPER
001008905 3367_ $$028$$2EndNote$$aElectronic Article
001008905 3367_ $$2DRIVER$$apreprint
001008905 3367_ $$2BibTeX$$aARTICLE
001008905 3367_ $$2DataCite$$aOutput Types/Working Paper
001008905 520__ $$aInterfacing a topological insulator (TI) with an $s$-wave superconductor (SC) is a promising material platform that offers the possibility to realize a topological superconductor through which Majorana-based topologically protected qubits can be engineered. In our computational study of the prototypical SC/TI interface between Nb and Bi$_2$Te$_3$, we identify the benefits and possible bottlenecks of this potential Majorana material platform. Bringing Nb in contact with the TI film induces charge doping from the SC to the TI, which shifts the Fermi level into the TI conduction band. For thick TI films, this results in band bending leading to the population of trivial TI quantum-well states at the interface. In the superconducting state, we uncover that the topological surface state experiences a sizable superconducting gap-opening at the SC/TI interface, which is furthermore robust against fluctuations of the Fermi energy. We also show that the trivial interface state is only marginally proximitized, potentially obstructing the realization of Majorana-based qubits in this material platform.
001008905 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008905 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001008905 588__ $$aDataset connected to DataCite
001008905 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001008905 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001008905 650_7 $$2Other$$aSuperconductivity (cond-mat.supr-con)
001008905 650_7 $$2Other$$aFOS: Physical sciences
001008905 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$ufzj
001008905 773__ $$a10.48550/ARXIV.2208.14289
001008905 8564_ $$uhttps://juser.fz-juelich.de/record/1008905/files/2208.14289.pdf$$yOpenAccess
001008905 909CO $$ooai:juser.fz-juelich.de:1008905$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001008905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001008905 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008905 9141_ $$y2023
001008905 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008905 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008905 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008905 9801_ $$aFullTexts
001008905 980__ $$apreprint
001008905 980__ $$aVDB
001008905 980__ $$aUNRESTRICTED
001008905 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008905 980__ $$aI:(DE-Juel1)IAS-1-20090406