001008974 001__ 1008974
001008974 005__ 20240709081924.0
001008974 0247_ $$2doi$$a10.48550/ARXIV.2210.09831
001008974 037__ $$aFZJ-2023-02560
001008974 1001_ $$0P:(DE-Juel1)194150$$aKaryofylli, Violeta$$b0$$eCorresponding author$$ufzj
001008974 245__ $$aSimplex space-time meshes in engineering applications with moving domains
001008974 260__ $$barXiv$$c2022
001008974 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1688981523_21519
001008974 3367_ $$2ORCID$$aWORKING_PAPER
001008974 3367_ $$028$$2EndNote$$aElectronic Article
001008974 3367_ $$2DRIVER$$apreprint
001008974 3367_ $$2BibTeX$$aARTICLE
001008974 3367_ $$2DataCite$$aOutput Types/Working Paper
001008974 520__ $$aThis paper highlights how unstructured space-time meshes can be used in production engineering applications with moving domains. Unstructured space-time elements can connect different spatial meshes at the bottom and top level of the space-time domain and deal with complicated domain movements/rotations that the standard arbitrary Lagrangian-Eulerian techniques can not resolve without remeshing. We use a space-time finite element discretization, by means of 4D simplex space-time elements, referred to as pentatopes by Behr [2008], which leads to entirely unstructured grids with varying levels of refinement both in space and in time. Furthermore, we use stabilization techniques, and the stabilization parameter is defined based on the contravariant metric tensor, as shown in the work of Pauli and Behr [2017]. Its definition was extended in 4D by von Danwitz et al. [2019], allowing us to deal with complex anisotropic simplex meshes in the space-time domain.
001008974 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001008974 536__ $$0G:(GEPRIS)260069256$$aSFB 1120 B05 - Adaptive Rechengitter in Raum und Zeit zur effizienten Simulation bewegter Phasengrenzen (B05) (260069256)$$c260069256$$x1
001008974 588__ $$aDataset connected to DataCite
001008974 650_7 $$2Other$$aComputational Engineering, Finance, and Science (cs.CE)
001008974 650_7 $$2Other$$aFOS: Computer and information sciences
001008974 7001_ $$0P:(DE-HGF)0$$aBehr, Marek$$b1
001008974 773__ $$a10.48550/ARXIV.2210.09831
001008974 909CO $$ooai:juser.fz-juelich.de:1008974$$pVDB
001008974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194150$$aForschungszentrum Jülich$$b0$$kFZJ
001008974 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001008974 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001008974 9141_ $$y2023
001008974 920__ $$lyes
001008974 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001008974 980__ $$apreprint
001008974 980__ $$aVDB
001008974 980__ $$aI:(DE-Juel1)IEK-9-20110218
001008974 980__ $$aUNRESTRICTED
001008974 981__ $$aI:(DE-Juel1)IET-1-20110218