001008999 001__ 1008999
001008999 005__ 20240712113115.0
001008999 0247_ $$2doi$$a10.1038/s41598-023-37308-5
001008999 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02568
001008999 0247_ $$2pmid$$a37414786
001008999 0247_ $$2WOS$$aWOS:001026209100048
001008999 037__ $$aFZJ-2023-02568
001008999 041__ $$aEnglish
001008999 082__ $$a600
001008999 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$ufzj
001008999 245__ $$aMultimodal investigation of electronic transport in PTMA and its impact on organic radical battery performance
001008999 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2023
001008999 3367_ $$2DRIVER$$aarticle
001008999 3367_ $$2DataCite$$aOutput Types/Journal article
001008999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689676244_4435
001008999 3367_ $$2BibTeX$$aARTICLE
001008999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008999 3367_ $$00$$2EndNote$$aJournal Article
001008999 520__ $$aOrganic radical batteries (ORBs) represent a viable pathway to a more sustainable energy storage technology compared toconventional Li-ion batteries. For further materials and cell development towards competitive energy and power densities, adeeper understanding of electron transport and conductivity in organic radical polymer cathodes is required. Such electrontransport is characterised by electron hopping processes, which depend on the presence of closely spaced hopping sites.Using a combination of electrochemical, electron paramagnetic resonance (EPR) spectroscopic, and theoretical moleculardynamics (MD) as well as density functional theory (DFT) modelling techniques, we explored how compositional characteristicsof cross-linked poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) polymers govern electron hopping andrationalise their impact on ORB performance. Electrochemistry and EPR spectroscopy not only show a correlation betweencapacity and the total number of radicals in an ORB using a PTMA cathode, but also indicates that the state-of-health degradesabout twice as fast if the amount of radical is reduced by 15%. The presence of up to 3% free monomer radicals did not improvefast charging capabilities. Pulsed EPR indicated that these radicals readily dissolve into the electrolyte but a direct effect onbattery degradation could not be shown. However, a qualitative impact cannot be excluded either. The work further illustratesthat nitroxide units have a high affinity to the carbon black conductive additive, indicating the possibility of its participation inelectron hopping. At the same time, the polymers attempt to adopt a compact conformation to increase radical–radical contact.Hence, a kinetic competition exists, which might gradually be altered towards a thermodynamically more stable configuration byrepeated cycling, yet further investigations are required for its characterisation.
001008999 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001008999 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001008999 536__ $$0G:(GEPRIS)422726248$$aDFG project 422726248 - SPP 2248: Polymer-basierte Batterien (422726248)$$c422726248$$x2
001008999 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x3
001008999 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008999 7001_ $$0P:(DE-Juel1)187474$$aOevermann, Steffen$$b1
001008999 7001_ $$0P:(DE-HGF)0$$aMitra, Souvik$$b2
001008999 7001_ $$0P:(DE-HGF)0$$aRudolf, Katharina$$b3
001008999 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b4
001008999 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
001008999 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
001008999 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b7
001008999 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b8
001008999 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b9$$eCorresponding author
001008999 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-023-37308-5$$gVol. 13, no. 1, p. 10934$$n1$$p10934$$tScientific reports$$v13$$x2045-2322$$y2023
001008999 8564_ $$uhttps://juser.fz-juelich.de/record/1008999/files/Multimodal%20investigation%20of%20electronic%20transport%20in%20PTMA%20and%20its%20impact%20on%20organic%20radical%20battery%20performance_Main.pdf$$yOpenAccess
001008999 8564_ $$uhttps://juser.fz-juelich.de/record/1008999/files/Multimodal%20investigation%20of%20electronic%20transport%20in%20PTMA%20and%20its%20impact%20on%20organic%20radical%20battery%20performance_SupportingInformation.pdf$$yRestricted
001008999 8564_ $$uhttps://juser.fz-juelich.de/record/1008999/files/s41598-023-37308-5.pdf$$yOpenAccess
001008999 8767_ $$8SN-2023-00743-b$$92023-11-23$$d2023-11-27$$eAPC$$jZahlung erfolgt
001008999 909CO $$ooai:juser.fz-juelich.de:1008999$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
001008999 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185897$$aRWTH Aachen$$b0$$kRWTH
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187474$$aForschungszentrum Jülich$$b1$$kFZJ
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b4$$kFZJ
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001008999 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b7$$kFZJ
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b8$$kFZJ
001008999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b9$$kFZJ
001008999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001008999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001008999 9141_ $$y2023
001008999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001008999 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-03-30
001008999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001008999 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001008999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008999 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001008999 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
001008999 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
001008999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
001008999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001008999 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001008999 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008999 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008999 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008999 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008999 920__ $$lyes
001008999 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001008999 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
001008999 9801_ $$aFullTexts
001008999 980__ $$ajournal
001008999 980__ $$aVDB
001008999 980__ $$aUNRESTRICTED
001008999 980__ $$aI:(DE-Juel1)IEK-12-20141217
001008999 980__ $$aI:(DE-Juel1)IEK-9-20110218
001008999 980__ $$aAPC
001008999 981__ $$aI:(DE-Juel1)IMD-4-20141217
001008999 981__ $$aI:(DE-Juel1)IET-1-20110218