001     1008999
005     20240712113115.0
024 7 _ |a 10.1038/s41598-023-37308-5
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02568
|2 datacite_doi
024 7 _ |a 37414786
|2 pmid
024 7 _ |a WOS:001026209100048
|2 WOS
037 _ _ |a FZJ-2023-02568
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Daniel, Davis Thomas
|0 P:(DE-Juel1)185897
|b 0
|u fzj
245 _ _ |a Multimodal investigation of electronic transport in PTMA and its impact on organic radical battery performance
260 _ _ |a [London]
|c 2023
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689676244_4435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic radical batteries (ORBs) represent a viable pathway to a more sustainable energy storage technology compared toconventional Li-ion batteries. For further materials and cell development towards competitive energy and power densities, adeeper understanding of electron transport and conductivity in organic radical polymer cathodes is required. Such electrontransport is characterised by electron hopping processes, which depend on the presence of closely spaced hopping sites.Using a combination of electrochemical, electron paramagnetic resonance (EPR) spectroscopic, and theoretical moleculardynamics (MD) as well as density functional theory (DFT) modelling techniques, we explored how compositional characteristicsof cross-linked poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) polymers govern electron hopping andrationalise their impact on ORB performance. Electrochemistry and EPR spectroscopy not only show a correlation betweencapacity and the total number of radicals in an ORB using a PTMA cathode, but also indicates that the state-of-health degradesabout twice as fast if the amount of radical is reduced by 15%. The presence of up to 3% free monomer radicals did not improvefast charging capabilities. Pulsed EPR indicated that these radicals readily dissolve into the electrolyte but a direct effect onbattery degradation could not be shown. However, a qualitative impact cannot be excluded either. The work further illustratesthat nitroxide units have a high affinity to the carbon black conductive additive, indicating the possibility of its participation inelectron hopping. At the same time, the polymers attempt to adopt a compact conformation to increase radical–radical contact.Hence, a kinetic competition exists, which might gradually be altered towards a thermodynamically more stable configuration byrepeated cycling, yet further investigations are required for its characterisation.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 1
536 _ _ |a DFG project 422726248 - SPP 2248: Polymer-basierte Batterien (422726248)
|0 G:(GEPRIS)422726248
|c 422726248
|x 2
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Oevermann, Steffen
|0 P:(DE-Juel1)187474
|b 1
700 1 _ |a Mitra, Souvik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rudolf, Katharina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heuer, Andreas
|0 P:(DE-Juel1)176646
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 7
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 8
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 9
|e Corresponding author
773 _ _ |a 10.1038/s41598-023-37308-5
|g Vol. 13, no. 1, p. 10934
|0 PERI:(DE-600)2615211-3
|n 1
|p 10934
|t Scientific reports
|v 13
|y 2023
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008999/files/Multimodal%20investigation%20of%20electronic%20transport%20in%20PTMA%20and%20its%20impact%20on%20organic%20radical%20battery%20performance_Main.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1008999/files/Multimodal%20investigation%20of%20electronic%20transport%20in%20PTMA%20and%20its%20impact%20on%20organic%20radical%20battery%20performance_SupportingInformation.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008999/files/s41598-023-37308-5.pdf
909 C O |o oai:juser.fz-juelich.de:1008999
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185897
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)185897
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176646
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21