001     1009014
005     20231027114409.0
024 7 _ |a 10.1175/JHM-D-22-0121.1
|2 doi
024 7 _ |a 1525-755X
|2 ISSN
024 7 _ |a 1525-7541
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02574
|2 datacite_doi
024 7 _ |a WOS:001024143100001
|2 WOS
037 _ _ |a FZJ-2023-02574
082 _ _ |a 550
100 1 _ |a Saadi, Mohamed
|0 P:(DE-Juel1)188805
|b 0
|e Corresponding author
245 _ _ |a Comparison of Three Radar-Based Precipitation Nowcasts for the Extreme July 2021 Flooding Event in Germany
260 _ _ |a Boston, Mass.
|c 2023
|b AMS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689944198_2062
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts, especially for lead times up to 12 h, but their evaluation depends on a variety of factors, namely, the choice of the hydrological model and the benchmark. We tested three precipitation nowcasting techniques based on radar observations for the disastrous mid-July 2021 event in seven German catchments (140–1670 km2). Two deterministic [advection-based and spectral prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble Prediction System (STEPS)] QPN with a maximum lead time of 3 h were used as input to two hydrological models: a physically based, 3D-distributed model (ParFlowCLM) and a conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For the 14 July 2021 event, we obtained the following key results. 1) According to the quality of the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) compared with adopting zero-precipitation nowcasts (hydrological persistence) as a benchmark. Using a skill-based approach, obtained improvements were up to 7–12 h depending on the benchmark. 2) The three QPN techniques obtained similar performances regardless of the applied hydrological model. 3) Using zero-precipitation nowcasts instead of hydrological persistence as benchmark reduced the added value of QPN. These results highlight the need for combining a skill-based approach with an analysis of the quality of forecasted hydrographs to rigorously estimate the added value of QPN.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Furusho-Percot, Carina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Belleflamme, Alexandre
|0 P:(DE-Juel1)179108
|b 2
|u fzj
700 1 _ |a Trömel, Silke
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 4
|u fzj
700 1 _ |a Reinoso-Rondinel, Ricardo
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1175/JHM-D-22-0121.1
|g Vol. 24, no. 7, p. 1241 - 1261
|0 PERI:(DE-600)2042176-X
|n 7
|p 1241 - 1261
|t Journal of hydrometeorology
|v 24
|y 2023
|x 1525-755X
856 4 _ |u https://juser.fz-juelich.de/record/1009014/files/Invoice_INV002808.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1009014/files/JHM-D-22-0121_Manuscript_R3_accepted.pdf
909 C O |o oai:juser.fz-juelich.de:1009014
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROMETEOROL : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21