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ABSTRACT 22 

Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts 23 

especially for lead times up to 12 hours, but their evaluation depends on a variety of factors, 24 

namely the choice of the hydrological model and the benchmark. We tested three 25 

precipitation nowcasting techniques based on radar observations for the disastrous mid-July 26 

2021 event in seven German catchments (140-1670 km2). Two deterministic [advection-27 

based and Spectral Prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble 28 

Prediction System (STEPS)] QPN with maximum lead time of 3 h were used as input to two 29 

hydrological models: a physically-based, 3D-distributed model (ParFlowCLM) and a 30 

conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN 31 

compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For 32 

the 14 July 2021 event, we obtained the following key results: (1) According to the quality of 33 

the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) 34 

compared with adopting zero-precipitation nowcasts (hydrological persistence) as a 35 

benchmark. Using a skill-based approach, obtained improvements were up to 7-12 h 36 

depending on the benchmark. (2) The three QPN techniques obtained similar performances 37 

regardless of the applied hydrological model. (3) Using zero-precipitation nowcasts instead of 38 

hydrological persistence as benchmark reduced the added value of QPN. These results 39 

highlight the need for combining a skill-based approach with an analysis of the quality of 40 

forecasted hydrographs to rigorously estimate the added value of QPN. 41 

Keywords: Extreme events; Ensembles; Nowcasting; Hydrologic models; Model 42 

evaluation/performance; Flood events 43 

1. Introduction 44 

Precipitation extremes are intensifying due to human-driven climate change (Fowler et al. 45 

2021). This means more severe and more frequent flooding events, which will lead to costlier 46 

damages to infrastructures and heavier human losses (Dottori et al. 2018; Dougherty and 47 

Rasmussen 2020). To mitigate these damages, operational and efficient flood warning 48 

systems are needed more than ever (Pappenberger et al. 2015a). These provide flood 49 

forecasts by relying on hydrological models fed with meteorological forecasts from 50 

numerical weather prediction (NWP) systems (Alfieri et al. 2012; Cloke and Pappenberger 51 

2009). With ensemble modeling, data assimilation, and improved representation of physical 52 
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processes enabled by the development of convection-permitting schemes (Speight et al. 2021; 53 

Clark et al. 2016), the skill of NWP has significantly increased during the last decades (Bauer 54 

et al. 2015), making it the best input for flood forecasting at the regional scale and for long 55 

horizons (> 6h; Lin et al., 2005). However, their use for short lead times (< 6h) in small-scale 56 

applications (enabled by using convection-permitting NWP) is hindered by the time needed 57 

for their spin-up and their too coarse spatial resolution for hydrological needs. 58 

Statistical extrapolation of the up-to-date weather radar observations (or nowcasting) can 59 

fill this gap by providing quantitative precipitation nowcasts (QPN) at high spatial and 60 

temporal resolutions (up to 1 km2 and 5 min, respectively; see for example Reinoso-Rondinel 61 

et al. 2022), which can outperform the NWP for short lead times (Berenguer et al. 2012). This 62 

level of detail is particularly useful to forecast flash floods from convective precipitation 63 

events especially in urban areas and rapidly responding catchments (Berenguer et al. 2005; 64 

Foresti et al. 2016; Ochoa-Rodriguez et al. 2015). Most QPN are generated by (1) estimating 65 

the motion field from remote sensing products, such as radar or satellite images, and (2) 66 

applying this motion field to displace the most recently observed precipitation field (Ayzel et 67 

al. 2019). These two steps form the core of most deterministic nowcasting techniques such as 68 

TREC (Tracking Radar Echo with Correlations, Rinehart and Garvey 1978), MAPLE 69 

(McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation; Germann and 70 

Zawadzki 2002), S-PROG (Spectral Prognosis; Seed 2003), and SWIRLS (Short-range 71 

Warning of Intense Rainstorms in Localized Systems; Woo and Wong 2017). To account for 72 

uncertainties in the motion field as well as in the evolution of the precipitation cells, many 73 

techniques adopt a stochastic approach by adding random perturbations based on 74 

corresponding spatiotemporal properties to produce an equally likely ensemble of QPN. 75 

Examples of these probabilistic techniques include STEPS (Bowler et al. 2006), STEPS-BE 76 

(STEPS system for Belgium; Foresti et al. 2016), SBMcast (String of Beads model; 77 

Berenguer et al. 2011), and ENS (Sokol et al. 2017). 78 

To evaluate the skill of QPN, several studies quantified the ability of nowcasting 79 

techniques to provide accurate short-term predictions of observed precipitation (see Table 1; 80 

Berenguer et al. 2011; Atencia and Zawadzki 2014, 2015; Mejsnar et al. 2018; Imhoff et al. 81 

2020; Reinoso-Rondinel et al. 2022). Their approach compares the predicted precipitation 82 

from QPN for a given lead time with quantitative precipitation estimates (QPE) obtained 83 

from radar observations. These studies focused on improving the nowcasting methods to 84 
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account for uncertainties in the prediction of precipitation fields and highlighted the limits of 85 

the applied methods in the case of warm-season and convective events (Mejsnar et al. 2018). 86 

To characterize and enhance the hydrological predictability of associated flash floods, Imhoff 87 

et al. (2020) analyzed the effect of catchment properties and event characteristics (such as the 88 

size and location) on the nowcasting skill. Towards a nationwide nowcasting system, 89 

Reinoso-Rondinel et al. (2022) improved the S-PROG technique by introducing spatially 90 

localized parameters for the inherent auto-regressive model and evaluated the skill with 91 

respect to radar-based QPE for 10 observed rain events in Germany. 92 

An alternative evaluation framework exploits (ensemble) QPN to serve as input to a 93 

hydrological model (see Table 1; Šálek et al. 2006; Berenguer et al. 2005; Vivoni et al. 2006; 94 

Xuan et al. 2014; Heuvelink et al. 2020; Lovat et al. 2022; Imhoff et al. 2022). The resulting 95 

simulated discharge time series are then compared to a reference discharge time series, which 96 

can be either the observed discharge, if available, or the simulated discharge by the 97 

hydrological model with QPE (i.e., observed precipitation) as input precipitation. This 98 

framework is more relevant for flood forecasting applications since it quantifies the added 99 

value of QPN, with respect to e.g. zero-precipitation nowcasts, in improving the lead time of 100 

hydrological forecasts. All studies found that radar-based QPN enhanced the forecasting skill 101 

achieved by the hydrological model, especially when blended with NWP forecasts (Lovat et 102 

al. 2022). Moreover, the forecasting skill depended on the physical properties of the 103 

catchment (such as size and topography), the type of the event (convective vs. stratiform), 104 

and the season (rain vs. snow). 105 

Reference QPN method Location Hydrological model 

Berenguer et al. 

(2011) 

SBMcast 

(probabilistic) 

Barcelona, Spain — 

Atencia and Zawadzki 

(2014, 2015) 

Two probabilistic 

nowcasting methods 

United States  — 

Mejsnar et al. (2018) COTREC 

(deterministic; Li et al. 

1995) 

Czech Republic — 

Imhoff et al. (2020) Four deterministic and 

probabilistic methods, 

namely Sparse, 

DenseRotation, S-

PROG, and STEPS, 

implemented within 

Rainymotion (Ayzel et 

al. 2019) and 

pySTEPS (Pulkkinen 

et al. 2019) 

Twelve catchments in 

the Netherlands 

— 
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Reinoso-Rondinel et 

al. (2022) 

S-PROG 

(deterministic; Seed 

2003) 

Germany — 

Berenguer et al. 

(2005) 

S-PROG 

(deterministic; Seed 

2003), Lagrangian 

advection and Eulerian 

persistence 

(deterministic) 

Barcelona, Spain DiCHiTop 

(distributed) 

Šálek et al. (2006) COTREC 

(deterministic; Li et al. 

1995) 

Czech Republic HYDROG 

(distributed) 

Vivoni et al. (2006) STNM algorithm 

(deterministic; 

Wolfson et al. 1999) 

Midwestern United 

States 

tRIBS (physically-

based, distributed) 

Xuan et al. (2014) STEPS (probabilistic; 

Bowler et al. 2006) 

One catchment in the 

United Kingdom 

PDM (lumped) 

Heuvelink et al. 

(2020) 

Lagrangian 

persistence/COTREC 

(deterministic; Li et al. 

1995) and SBMcast 

(probabilistic; 

Berenguer et al. 2011) 

Three catchments in 

the Netherlands 

WALRUS (lumped) 

Lovat et al. (2022) AROME-NWC 

(deterministic, NWP-

based; Auger et al. 

2015) and PIAF 

(combination of radar 

nowcasts and NWP; 

Moisselin et al. 2019) 

Nineteen catchments 

in south-eastern 

France 

ISBA-TOP 

(distributed) 

Imhoff et al (2022) Four deterministic and 

probabilistic methods, 

namely Sparse, 

DenseRotation, S-

PROG, and STEPS, 

implemented within 

Rainymotion (Ayzel et 

al. 2019) and 

pySTEPS (Pulkkinen 

et al. 2019) 

Twelve catchments in 

the Netherlands 

SOBEK (semi-

distributed) and 

WALRUS (lumped) 

Table 1. Summary of applications using deterministic and probabilistic precipitation 106 

nowcasting methods with and without hydrological evaluation.  107 

Despite these findings, previous studies did not focus on the evaluation methodology of 108 

the nowcasting techniques. Namely, all of the listed studies (except Imhoff et al. 2022) 109 

adopted a single modeling approach (i.e., either lumped or distributed, conceptual or 110 

physically-based), which did not allow for considering how the choice of the hydrological 111 

model structure impacted the evaluation of the nowcasting techniques (such as done by 112 

Poméon et al., 2020). In addition, the impact of the benchmark nowcasting model (such as 113 

zero-precipitation nowcasts or hydrological persistence) on the forecasting skill remains 114 
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poorly investigated while it can have significant impact on the estimated added value of QPN 115 

(Pappenberger et al. 2015b). 116 

To tackle these gaps, we evaluated one probabilistic (STEPS) and two deterministic 117 

nowcasting techniques (advection-based and S-PROG) by measuring their ability in 118 

forecasting simulated hydrographs with QPE. Our study focuses on the disastrous mid-July 119 

2021 events in seven catchments located in western Germany. These events caused more than 120 

220 deaths and costed up to €32.05 billion in total losses in Germany alone, making them one 121 

of the most severe natural disasters caused by heavy rain and flooding in Germany (Mohr et 122 

al. 2023). We adopted a novel multi-modeling approach by evaluating QPN as inputs to a 123 

conceptual, lumped model (GR4H) and to a physically-based, 3D-distributed model 124 

(ParFlowCLM). Thus, the aim of this study is to investigate whether a more detailed 125 

representation of hydrological processes leads to a better discrimination of QPN compared to 126 

a simpler, lumped one. Moreover, we checked whether different choices of skill evaluation 127 

and benchmarks impact the estimation of the added value of the nowcasting techniques. 128 

This paper is organized as follows. Section 2 presents the case study, the catchment set, 129 

and the QPE product used to produce the QPN. Section 3 introduces the tested nowcasting 130 

techniques, the hydrological models and the evaluation framework, while Sections 4 and 5 131 

comment and discuss the results. Finally, Section 6 concludes our study. 132 

2. Catchment set and QPE product 133 

In July 2021, sustained stratiform rain connected to a cut-off low pressure system 134 

(Junghänel et al. 2021) led to record-breaking precipitation amounts and disastrous floods 135 

(Kreienkamp et al. 2021; Mohr et al. 2023), especially over relatively high altitudes at the 136 

Eifel range on the left bank of the Rhine river and the Bergisches Land on the right bank 137 

(Figs. 1 and 2). On 14 July 2021, observed total precipitation sums exceeded 160 mm at some 138 

rain gauges (Fig. 2c), which is equivalent to two to three months of accumulated precipitation 139 

based on the annual averages (i.e., by dividing 160 mm by the annual averages listed in Table 140 

2). Since rain gauges do not provide a detailed description of the spatial variability of 141 

precipitation, measurements from four polarimetric C-band radars (located at Essen, 142 

Flechtdorf, Neuheilenbach, and Offenthal; Fig. 2a), operated by the German Weather Service 143 

(DWD), were exploited to derive a gridded QPE product for the 14 July 2021 (Fig. 2b) with 144 

1-km horizontal resolution and 5-min temporal resolution. This hybrid product combines 145 
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precipitation estimates derived from specific attenuation at vertical polarization AV, R(AV), 146 

with retrievals of specific differential phase KDP for horizontal reflectivity rates Zh higher 147 

than 40 dBZ, R(KDP). This product clearly outperformed retrievals based on horizontal 148 

reflectivity alone (Chen et al. 2021; Saadi et al. 2023). The hybrid QPE product, referred to as 149 

RAVKDP in the following, served as input for QPN algorithms.150 

 151 

Fig. 1. (a) Location, topography and hydrographic network of study catchments, where 152 

contours indicate the catchment polygons, and (b) hypsometric curves of the catchment set. 153 

Negative elevations are due to the existence of open-pit mines in the region. 154 
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 155 

 156 

Fig. 2. (a) Location of the four C-band radars (Essen, Flechtdorf, Neuheilenbach, and 157 

Offenthal) operated by the German Weather Service (DWD) and used to derive the QPE 158 

product RAVKDP. (b) Total precipitation amounts on 14 July 2021 (from 0000 UTC 14 July 159 

2021 to 0000 UTC 15 July 2021) estimated from the radar-based QPE RAVKDP and (c) 160 

from 63 rain gauges. For the 63 rain gauges, the ratio of total precipitation from RAVKDP to 161 

that from the rain gauge varied between 0.27 and 3.00, with a median value of 0.72. The light 162 

grey contours indicate the borders with the neighboring countries (The Netherlands, Belgium, 163 

Luxembourg, and France). 164 

To hydrologically evaluate the benefits of QPN, we selected a set of seven catchments 165 

located in western Germany that drain parts of the Eifel mountain range (Fig. 1a), 166 

characterized by a rolling plateau at elevations up to 750 m a.s.l. (Fig. 1b). These catchments 167 

have areas ranging between 140 and 1670 km2 (Table 2). Three of the seven catchments are 168 

located in the federal state of North Rhine-Westphalia and are drained by the Erft and the Rur 169 

rivers. The remaining four catchments are located in the federal state of Rhineland-Palatinate 170 

and are drained by the Ahr and the Kyll rivers. The region is characterized by a temperate 171 

climate under maritime influence, which is reflected by the range of the average annual 172 

precipitation amounts (710 to 1070 mm/yr) and the values of the aridity index as defined by 173 

the United Nations Environment Programme (1.13 to 1.92; UNEP 1992). The land cover of 174 

the catchments is mainly occupied by forest and agricultural areas according to the CORINE 175 

Land Cover database of 2018 (Langanke et al. 2016). Soils are dominated by sand (34%-176 
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41%) and silt contents (29%-38%; Panagos, 2006). To estimate total precipitation amounts on 177 

14 July 2021 at the catchment scale, we applied the Thiessen polygon method on 178 

measurements from rain gauges and on RAVKDP. Estimated precipitation amounts from rain 179 

gauges varied between 66 and 121 mm across our catchment set (Table 2), reflecting the 180 

severity of the event and its variability from one catchment to another. Based on RAVKDP, 181 

obtained estimates totaled only 34 mm to 90 mm (Table 2), indicating an underestimation 182 

with respect to estimated amounts from rain gauges. This underestimation is partly attributed 183 

to collision-coalescence processes that took place close to the surface, i.e. below the heights 184 

monitored by the radars (Saadi et al. 2023; Chen et al. 2022). 185 

Rivera 

Area 

(km2

) 

Average 

precipitation 

(mm/yr) 

Aridity 

indexb 

(-) 

Average 

discharge 

(mm/yr) 

Artificialc 

(%) 

Agriculturalc 

(%) 

Forestc 

(%) 

Total 

precipitation 

amount on 14 

July 2021 

(mm) from 

RAVKDP/rain 

gauges 

(number of 

rain gauges) 

Erft at 

Neubrueck 1668 
740 (2006-

2021) 
1.16 

180 

(2000-

2020) 

17.7 64.3 17.8 66/99 (13) 

Kyll at 

Kordel 
840 

830 (2006-

2021) 
1.41 

370 

(1967-

2021) 

5.4 51.9 42.7 80/103 (10) 

Ahr at 

Altenahr 
757 

750 (2006-

2021) 
1.27 

280 

(1945-

2021) 

3.5 39.5 57 89/108 (7) 

Erft at 

Bliesheim 
552 

710 (2006-

2021) 
1.13 

130 

(2000-

2020) 

12.6 59.1 28.2 88/108 (7) 

Kyll at 

Densborn 
473 

890 (2006-

2021) 
1.54 

450 

(1972-

2021) 

4 47.7 48.2 87/115 (7) 



10 

File generated with AMS Word template 2.0 

Ahr at 

Muesch 
346 

790 (2006-

2021) 
1.34 

280 

(1972-

2021) 

4 52.9 43.1 90/121 (6) 

Rur at 

Monschau 
144 

1070 (2006-

2021) 
1.92 

760 

(2000-

2021) 

6.1 25.4 62.9 34/66 (1) 

aAll catchments contain at least one reservoir (lake or dam) according to the database at 

https://dewiki.de/Lexikon/Liste_von_Talsperren_in_Deutschland (in German, last access: 14 April 2023). 
bThe aridity index was computed as the ratio of average annual precipitation to average annual atmospheric evaporative 

demand, which we expressed as the average annual potential evapotranspiration (UNEP 1992). Potential 

evapotranspiration was computed using a temperature-based formula (Oudin et al. 2005). 
cThese metrics were computed based on the CORINE Land Cover classification of the Copernicus Land Monitoring 

Service (Langanke et al. 2016). They correspond to the proportion of the catchment that is occupied by the classes 

belonging to (1) “Artificial Surfaces” for Artificial, (2) “Agricultural areas” for Agricultural, and (3) “Forest and 

seminatural areas” for Forest. See https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-

nomenclature-guidelines/html (last access: 14 April 2023). 

Table 2. Summary of catchment characteristics. Catchment-average, total precipitation 186 

amount on 14 July 2021 (from 0000 UTC 14 July 2021 to 0000 UTC 15 July 2021) are 187 

extracted from RAVKDP, the radar-based QPE product, and from rain gauges using Thiessen 188 

polygons. In the far-right column, the total number of rain gauges used for the 14 July 2021 189 

for each catchment is provided between brackets. 190 

3. Evaluation of the added value of QPN 191 

a. Tested nowcasting techniques 192 

Based on the QPE product RAVKDP, we computed 3-h long QPN with 1-km spatial and 193 

5-min temporal resolution. In this study, three nowcasting strategies following Reinoso-194 

Rondinel et al. (2022) have been applied: 195 

1. The deterministic method based on Lagrangian persistence (advection-based) assumes 196 

a constant precipitation field (i.e., with no growth or decay) advected using a static 197 

motion field. First, the motion field was estimated from the RAVKDP product using 198 

the optimal-flow method DARTS (Ruzanski et al. 2011). Then, the latest observed 199 

precipitation field is advected along the estimated motion trajectories for the next 200 

three hours using a semi-Lagrangian backward scheme (Germann and Zawadzki 201 

2002). 202 

2. The deterministic method S-PROG (Spectral Prognosis; Seed, 2003) assumes that the 203 

spatial scale of precipitation features is on par with its lifetime and thus its 204 

predictability. This means that larger precipitation features tend to last longer and can 205 

https://dewiki.de/Lexikon/Liste_von_Talsperren_in_Deutschland
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
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be predicted with larger lead times. First, the precipitation field is decomposed into a 206 

multiplicative cascade of spatial scales. Second, an autoregressive model (AR) is used 207 

to model and forecast the temporal evolution and to advect each cascade level. 208 

Finally, the nowcasted field is computed as the aggregation of the advected cascade 209 

levels. This leads to a smoothing of the precipitation field as the small-scale, high-210 

frequency features tend to vanish with time according to the AR model. Compared 211 

with Seed (2003), we kept the order of the AR model at 1 instead of 2, and we fixed 212 

the number of levels of the multiplicative cascade at 6, resulting in the following 213 

spatial scales of 900, 56, 20, 7, 3, and 1 km. Moreover, we used the precipitation field 214 

instead of the reflectivity field. Since the precipitation field does not follow a 215 

Gaussian distribution, the above processes were applied to the log-transformed values 216 

of precipitation, which we assumed to have a near-Gaussian distribution. After 217 

extrapolation, an inverse transformation was applied to the nowcasted precipitation 218 

field. These choices follow the study by Reinoso-Rondinel et al. (2022). 219 

3. The probabilistic method STEPS (Short-Term Ensemble Prediction System; Bowler 220 

et al., 2006) builds on S-PROG by adding stochastic perturbations to account for the 221 

uncertainties in the estimated motion field and the evolution of the precipitation cells. 222 

More precisely, each cascade level is perturbed by Gaussian white noise that is 223 

correlated with the spatial properties of the last observed precipitation field (Seed et 224 

al. 2013), which leads to an ensemble of QPN. In our study, we considered an 225 

ensemble of 20 members. 226 

For each QPN method, we generated 3-h long time series of nowcasted precipitation each 227 

5 min (i.e., at 0000 UTC, 0105 UTC, 0110 UTC 14 July 2021, etc.) with a temporal 228 

resolution of 5 min. Since we chose to feed these QPN to hourly hydrological models, we 229 

kept only QPN that were issued at round hours (i.e., at 0100 UTC, at 0200 UTC, …, and at 230 

1800 UTC 14 July 2021) and discarded the remaining ones. In addition, we aggregated the 5-231 

min QPN time series to obtain hourly accumulations of precipitations. 232 

b. Hydrological models 233 

We analyzed the impact of the hydrological model on the evaluation of QPN by selecting 234 

two contrasting modeling approaches, for which the implementation is described in Table 3. 235 

As a physically-based, distributed model, we used ParFlow with its internal land surface 236 

module CLM (Common Land Model), hereafter ParFlowCLM (Kollet and Maxwell 2006; 237 
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Kuffour et al. 2020; Maxwell 2013). CLM estimates the actual evapotranspiration, 238 

infiltration, and net precipitation (i.e., the part that gives rise to runoff) by resolving the 239 

energy budget at the land surface and the water exchange at the interface between the 240 

atmosphere, the land, and the soil. ParFlow solves the 3D Richards’ equation for variably 241 

saturated subsurface and groundwater flow and the kinematic wave equation for the overland 242 

flow routing. These two equations are coupled at the land surface by estimating the boundary 243 

fluxes for the kinematic wave model from Richards’ equation, and vice versa. Thanks to this 244 

coupling, the model represents a variety of runoff processes (Hortonian vs. Dunne runoff) as 245 

well as the re-infiltration and exfiltration processes along the hydraulic pathway. We 246 

implemented ParFlowCLM at a resolution of 611 m with 15 vertical layers down to 60 m 247 

below the surface (Belleflamme et al. 2023). It was forced with gridded weather inputs over a 248 

spin-up period starting from 2007, with only one parameter set for each catchment based on 249 

landscape properties, as detailed in Table 3. 250 

As a conceptual, lumped model, we chose GR4H (Ficchì et al. 2019). This model 251 

estimates net precipitation and actual evapotranspiration using a soil-moisture accounting 252 

reservoir. The net precipitation gives rise to runoff through two routing branches. The quick 253 

flow branch transfers 10% of net precipitation via a unit hydrograph, while the slow flow 254 

branch transfers the remaining 90% via a unit hydrograph and a nonlinear reservoir. Over 255 

both branches, an exchange between surface flow and groundwater is enabled. GR4H uses 256 

catchment-average weather inputs to simulate the discharge at the catchment outlet. Model 257 

parameters were estimated using historical discharge measurements over the period 2007-258 

2021, with a spin-up over the year 2006 to limit the effect of model initialization on 259 

calibration. We tested several choices of calibration combining the sub-period of calibration, 260 

the cost function, and the weights attributed to discharge measurements to emphasize high 261 

values, yielding 12 optimal parameter sets for each catchment (Saadi et al. 2023). 262 

Model Spatial and 

temporal 

resolution 

Parameter estimation Hydroclimatic data 
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ParFlowCLM ~611 m 

horizontal 

resolution with 

a geometrically 

varying vertical 

resolution, 

hourly 

Topography: ASTERa DEMb (Abrams et al. 

2020; 

https://lpdaac.usgs.gov/products/astgtmv003) 

combined with MERITc Hydro (Yamazaki et 

al. 2019). 

 

Soil and geology: SoilGrids250m (Hengl et 

al. 2017), reclassified into 12 USDAd texture 

types, and IHME1500e (Duscher et al. 2015) 

for the typology below the depth to bedrock; 

ROSETTA model (Schaap et al. 2001) to 

obtain hydraulic parameters (hydraulic 

conductivity, residual and saturated water 

content, and van Genuchten parameters) 

depending on soil types. 

 

Land cover: CORINEf Land Cover database 

of the CLMSg for the year 2018 (Langanke et 

al. 2016; https://land.copernicus.eu/pan-

european/corine-land-cover/clc2018, last 

access: 12 March 2020), reclassified into 18 

IGBPh categories. A uniform Manning’s 

coefficient at 0.2 s∙m-1/3 (Schalge et al. 2019) 

was used for the whole domain. 

 

Only one parameter set for each catchment 

(Belleflamme et al. 2023). 

Precipitation: RADOLANi of the 

DWDj (Winterrath et al. 2018), 

which is a Germany-wide, radar-

based near-real time precipitation 

product available at 1-km 

resolution and hourly time steps 

obtained using relationships 

between horizontal reflectivity 

and precipitation rates, and then 

adjusted to rain gauges (i.e., 

RADOLAN-RW, 

https://opendata.dwd.de/, last 

access 14 April 2023). RAVKDP 

was used for precipitation on 14 

July 2021 (Chen et al. 2021). 

 

2-m air temperature, surface 

pressure, downward solar and 

thermal radiation, specific 

humidity, and eastward and 

northward components of the 10-

m wind: ERA5-Land dataset 

(Muñoz-Sabater et al. 2021), 

available at 9-km resolution. 

https://lpdaac.usgs.gov/products/astgtmv003
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://opendata.dwd.de/
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GR4H Lumped, hourly Four catchment-scale parameters representing 

the maximum retention capacity of the soil, 

the exchange between surface water and 

groundwater, the surface flow dynamics and 

the baseflow dynamics. These parameters are 

calibrated on historical discharge 

measurements using a gradient-descent based 

algorithm (Coron et al. 2017; Edijatno et al. 

1999). 

 

12 optimal sets of 4 parameters for each 

catchment (Saadi et al. 2023). 

Catchment-averaged 

precipitation: RADOLANi of the 

DWDj (Winterrath et al. 2018), 

available at 1-km and hourly 

resolutions, estimated based on 

horizontal reflectivity and 

adjusted to rain gauges (i.e., 

RADOLAN-RW, 

https://opendata.dwd.de/, last 

access 14 April 2023). RAVKDP 

was used for precipitation on 14 

July 2021 (Chen et al. 2021). 

Thiessen polygons were used to 

estimate the catchment-average 

precipitation at each hour. 

 

Catchment-averaged potential 

evapotranspiration: obtained 

from catchment-average, 2-m air 

temperature using a temperature-

based formula (Oudin et al. 

2005). 

 

Discharge: used for model 

calibration, available at daily 

resolution 

(https://www.elwasweb.nrw.de; 

https://wasserportal.rlp-

umwelt.de, last access: 20 

September 2021). 
aAdvanced Spaceborne Thermal Emission and Reflection Radiometer; bDigital elevation model; cMulti-Error-

Removed Improved Terrain; dUnited States Department of Agriculture; eInternational Hydrogeological Map of 

Europe at the scale of 1:1500000; fCoordination of Information on the Environment; gCopernicus Land Monitoring 

Service; hInternational Geosphere-Biosphere Programme; iRadar-Online-Aneichung; jDeutscher Wetterdienst 

(German Weather Service) 

Table 3. Details of ParFlowCLM and GR4H implementation: resolution, parameter 263 

estimation, and sources of hydroclimatic data needed for each model. 264 

c. Comparison and evaluation framework of QPN 265 

Following Berenguer et al. (2005), we evaluated the skill of QPN on two levels. On the 266 

first level, we analyzed how QPN succeeded in matching QPE for each lead time, first at the 267 

grid-cell scale, then at the catchment scale by averaging the precipitation fields using the 268 

catchment polygon. At the grid-cell scale, we adopted the mean absolute error MAE (mm/h) 269 

and the root-mean-square error RMSE (mm/h) as evaluation metrics, expressed as: 270 

https://opendata.dwd.de/
https://www.elwasweb.nrw.de/
https://wasserportal.rlp-umwelt.de/
https://wasserportal.rlp-umwelt.de/
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MAE (L) =
1

Nt ∙ Nc
∑ ∑|Pt+L|t̂(i) − Pt+L(i)|

Nt

t=1

Nc

i=1

  (1) 

RMSE (L) = √
1

Nt ∙ Nc
∑ ∑ (Pt+L|t̂(i) − Pt+L(i))

2
Nt

t=1

Nc

i=1

  (2) 

where Nt is the number of initialization time steps (i.e., hours or 5-min time steps between 271 

0100 UTC 14 July 2021 and 1800 UTC 14 July 2021), Nc is the number of grid cells, L is the 272 

lead time, Pt+L|t̂(i) is the QPN intensity for the time step t + L issued at time step t for the 273 

grid cell i, and Pt+L(i) is the QPE intensity at time step t + L for the grid cell i. Both RMSE 274 

(mm/h) and MAE (mm/h) vary between 0 (perfect match) and +∞. Note that for the 275 

computation of the spatial average of MAE and RMSE, we excluded the grid cells for which 276 

the total precipitation amount on 14 July 2021 (according to RAVKDP) was equal to zero. By 277 

this choice, we aimed at limiting the number of grid cells for which the errors are equal or 278 

very close to zero, the inclusion of which would artificially decrease the two accuracy 279 

measures. At the catchment scale, we first averaged the precipitation time series using the 280 

catchment polygon, then we computed the MAE between the resulting catchment-scale QPE 281 

time series and catchment-scale QPN time series. 282 

For the probabilistic STEPS method, since each member served as input to the 283 

hydrological models, both MAE and RMSE scores were estimated for each of the 20 284 

members, then for a deterministic nowcast STEPS-m taken as the ensemble mean at each grid 285 

cell and at each time step. Following the approach by Foresti et al. (2016), we also aimed at 286 

analyzing the spread of the ensemble with respect to the errors of the deterministic forecast 287 

(i.e., S-PROG or STEPS-m) in order to qualify whether the ensemble was under-dispersive 288 

(i.e., underestimating the uncertainty in the evolution of the precipitation field) or over-289 

dispersive (i.e., overestimating the uncertainty in the evolution of the precipitation field; see 290 

Foresti et al. 2016). To this aim, we estimated the spread of the ensemble at the grid-cell scale 291 

at each lead time using the following equation (Foresti et al. 2015): 292 
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spread (L) = √
1

Nt ∙ Nc
∑ ∑

1

M − 1
∑ (Pt+L|t̂(i, m) − Pt+L|t̂

̅̅ ̅̅ ̅̅ ̅(i))
2

M

m=1

Nt

t=1

Nc

i=1

  (3) 

where M = 20 is the total number of members, Pt+L|t̂(i, m) is the QPN intensity for the time 293 

step t + L issued at time step t for the grid cell i by the STEPS member m, and Pt+L|t̂
̅̅ ̅̅ ̅̅ ̅(i) is the 294 

intensity of the STEPS ensemble mean nowcast at time step t + L issued at time step t for the 295 

grid cell i. Ideally, the spread should be of the same order of variability of the QPE around 296 

the ensemble mean, measured in our case by the RMSE of the ensemble mean nowcast 297 

STEPS-m. When the spread is higher than this RMSE, the ensemble is over-dispersive, 298 

otherwise the ensemble is under-dispersive (Foresti et al. 2016). 299 

On the second level, QPN were used to extend the precipitation input to the hydrological 300 

models. First, both models were run prior to 0100 UTC 14 July 2021 with the version of 301 

RADOLAN that was adjusted to rain gauges (i.e., RADOLAN-RW; Winterrath et al. 2018) 302 

as input precipitation (see Table 3). These runs started from January 2021 for ParFlowCLM 303 

and from 2007 for GR4H. Starting from 0100 UTC 14 July 2021, the QPE product RAVKDP 304 

was used instead of RADOLAN for our study region. At each initialization hour (e.g., 0100 305 

UTC 14 July 2021), the QPE was replaced by the 3-h QPN (e.g., at 0200 UTC, 0300 UTC 306 

and 0400 UTC) followed by zero precipitation (e.g., from 0500 UTC onward). Then, the 307 

resulting forecasted hydrographs were compared to the simulated hydrograph with the QPE 308 

product RAVKDP as input for 14 July 2021 and RADOLAN as input for the remaining days 309 

(i.e., the hindcasted hydrograph). 310 

In a first step, we evaluated the quality of the hydrological forecasts obtained by the use of 311 

QPN and the benchmarks using the Nash-Sutcliffe Efficiency score (NSE, Nash and Sutcliffe 312 

1970), computed as: 313 

NSE (L) =  1 −
∑ (Qt+L − Qt+L|t

̂ )2Nt
t=1

∑ (Qt+L − Qt+L
̅̅ ̅̅ ̅̅ )2Nt

t=1

 (4) 

where Qt+L|t
̂  is the forecasted discharge values at the time step t + L initialized at the time 314 

step t, Qt+L the hindcasted discharge values (i.e., simulated hydrographs using QPE) at time 315 

step t + L and Qt+L
̅̅ ̅̅ ̅̅  their average. NSE varies between −∞ and 1, the latter being the ideal 316 

value. As the lead time increases, NSE is expected to decrease. Fig. 8 of Berenguer et al. 317 
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(2005) and Fig. 2 of Heuvelink et al. (2020) illustrate the application of this evaluation 318 

method. 319 

The added value of each QPN can be estimated by comparison with a 320 

benchmark/reference option (Pappenberger et al. 2015b). To measure this added value, we 321 

computed the gain in lead time defined as (Berenguer et al. 2005): 322 

Gain in lead time =  LQPN(NSEth) − LRef(NSEth)  (5) 

where LQPN(NSEth) is the lead time at which the obtained NSE with the QPN as input to the 323 

hydrological model equals NSEth for the first time, and LRef(NSEth) is the lead time at which 324 

the obtained NSE with the benchmark Ref equals NSEth for the first time. Following 325 

Heuvelink et al. (2020), we adopted a threshold of NSEth = 0.9. To analyze the impact of 326 

this threshold, we computed the gain for an additional threshold of NSEth = 0.5. 327 

In a second step, we applied the average of the Continuous Ranked Probability Score 328 

CRPS (Hersbach 2000), expressed for each lead time L as: 329 

CRPS (L) =  
1

Nt
∑ ∫ (FQt+L|t̂ (x) −  𝟙{Qt+L ≤ x})

2
dx

+∞

0

Nt

t=1

 (6) 

where FQt+L|t̂  is the cumulative distribution function of the forecasted discharge values Qt+L̂ 330 

initialized at the time step t for the time step t + L, and Qt+L is the value at time step t + L of 331 

the simulated hydrograph using QPE (i.e., the hindcasted hydrograph). 𝟙{y ≤ x} is the 332 

Heaviside step function that equals 1 if y ≤ x and 0 otherwise. CRPS was chosen because it 333 

helps undistinguishably evaluate both the probabilistic and the deterministic nowcasting 334 

methods. For a deterministic forecast, it is equivalent to MAE.  335 

To evaluate the added value of the QPN methods with respect to a benchmark, a skill 336 

score based on the CRPS was computed as follows (Chen et al. 2017): 337 

SkillCRPS,Ref =  
CRPS(Ref)

CRPS(QPN) + CRPS(Ref)
 (7) 

which is a bounded (between 0 and 1) and a scale-independent metric. A skill higher than 0.5 338 

indicates that the forecasts obtained with QPN are better than the ones obtained with the 339 

benchmark (i.e., CRPS(QPN) < CRPS(Ref)), and vice versa.  340 

To investigate the effect of the benchmark choice on the evaluation of QPN, we evaluated 341 

the skill of QPN with respect to: (1) a hydrological persistence model (Berthet et al. 2009) 342 
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that forecasts the future discharge to be constant and equal to the hindcasted discharge at the 343 

hour of initialization (SkillCRPS, Q), and (2) a forecasted hydrograph using zero precipitation 344 

nowcasts (ZNC; Heuvelink et al. 2020; Berenguer et al. 2005) as QPN (SkillCRPS, ZNC). The 345 

latter is costlier than the former because it involves running the hydrological model for the 346 

ZNC. Finally, for the CRPS-based skill in Eq. 7, we retrieved the lead time up to which QPN 347 

is considered to be “useful” with respect to the benchmark using two skill thresholds: the 348 

theoretical one at 0.5, and a more demanding one (2/3 ≈ 0.67, which is equivalent 349 

to CRPS(QPN) <
1

2
 CRPS(Ref)). 350 

To qualitatively analyze the effect of catchment properties on the added value of QPN 351 

with respect to the benchmark, the gains in lead time based on NSE (Eq. 4) and based on the 352 

skills (Eq. 7) were ranked first with respect to catchment area, and second with respect to the 353 

Gravelius index of the catchment, defined as (Bendjoudi and Hubert 2002): 354 

K =  
P

2√πA
 (8) 

where P is the perimeter of the catchment polygon (in km) and A the catchment area (in km2). 355 

Catchments with lower K tend to have compact or circular shapes, which would generally 356 

result in flashier hydrological responses for a given precipitation event covering the whole 357 

catchment. 358 

4. Results 359 

a. Evaluation of QPN with respect to QPE 360 

Aggregating the QPN time series to the hourly time step reduced the differences between 361 

the three methods and modified their ranking, as can be seen in Fig. 3. At 5-min resolution 362 

(Figs. 3a and 3b), QPN obtained by advection and STEPS had similar MAE and RMSE 363 

scores over the domain along the lead times. As the lead time increased, S-PROG clearly 364 

outperformed the other two QPN methods. At 1-h resolution (Figs. 3c and 3d), the three 365 

methods obtained lower MAE and RMSE values compared with the 5-min resolution, S-366 

PROG preserved its ranking with respect to advection and STEPS, whereas advection slightly 367 

outperformed the STEPS ensemble, suggesting that changing the accumulation window can 368 

modify the ranking of the QPN methods. For both time resolutions, the STEPS ensemble 369 

mean STEPS-m outperformed all the other members for all time steps, suggesting that the 370 

stochastic perturbations of the S-PROG method (materialized by STEPS members) got 371 
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penalized for this event. Finally, there were very small differences between the different 372 

STEPS members in terms of MAE and RMSE (hardly visible in Fig. 3), which is somewhat 373 

expected from averaging the errors in space (over the domain) and time (across the 374 

initialization time steps) for members generated randomly and independently for each 375 

initialization. The small spread of STEPS members compared with the RMSE of the 376 

ensemble mean STEPS-m or the RMSE of the deterministic S-PROG method suggests that 377 

the ensemble nowcasts were under-dispersive (Foresti et al. 2016), i.e. that they 378 

underestimated the uncertainty in the nowcasted precipitation field for this event. 379 

 380 

Fig. 3. Evolution of the spatial average of mean absolute errors (MAE) and root-mean-381 

square errors (RMSE) of QPN with respect to precipitation rates from the QPE product 382 

RAVKDP for different lead times at 5-min resolution updated each 5 min for (a) and (b), and 383 

at 1-h resolution updated each hour for (c) and (d). In (b) and (d), “spread” indicates the 384 

spread of the STEPS ensemble (Eq. 3). STEPS-m indicates the ensemble mean, i.e., the 385 

nowcast made by taking the average of the nowcasted depths from the 20 STEPS members at 386 

each grid cell and each time step. The spatial average was computed on all domain grid cells 387 

except the ones with zero-precipitation amounts on 14 July 2021 according to the QPE 388 

product RAVKDP. The ensemble of MAE and RMSE errors for the STEPS method is hardly 389 

visible due to very small differences between the members.  390 

At the hourly time step, the three QPN methods showed comparable performances in 391 

reproducing the observed precipitation at the grid-cell-scale, with a slightly higher 392 



20 

File generated with AMS Word template 2.0 

performance for S-PROG, as shown in Fig. 4. The spatial pattern of MAE followed that of 393 

the precipitation sums for the event (Fig. 2b), with a slight shift for the part of the event cell 394 

located over the catchment set to the south-west. Unsurprisingly, the errors were minimal for 395 

the shortest lead time (i.e., 1 h) and increased with increasing lead time. For the 1-h lead time, 396 

domain-average MAE values were around 0.36-0.37 mm/h for the advection and S-PROG 397 

methods, whereas they reached 0.39 mm/h on average for STEPS members, indicating a 398 

slightly deteriorated accuracy for the probabilistic QPN. For the 3-h lead time, these errors 399 

more than doubled and reached 0.77 mm/h for advection, 0.7 mm/h for S-PROG, and 0.79 400 

mm/h on average for STEPS, indicating a better performance of the S-PROG method over 401 

the domain. 402 
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 403 

Fig. 4. Mean absolute errors (MAE) of QPN obtained using advection (left column), S-404 

PROG (middle column) and STEPS for the 1-h lead time (top row), 2-h lead time (middle 405 

row) and 3-h lead time. MAE values were computed with respect to observed precipitation 406 

rates from RAVKDP. For STEPS, the median errors over the 20 members is shown. 407 

At the catchment scale, the advection method obtained slightly better results than S-PROG 408 

and STEPS, as shown in Fig. 5. The change in the ranking of the QPN methods with respect 409 

to Fig. 3 may be explained by the catchment-scale aggregation of the precipitation fields prior 410 

to the computation of the errors, or the fact that the catchments do not cover the whole 411 
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domain on which MAE values of Fig. 3 were computed (see Fig. 2b and Fig. 4). Moreover, 412 

advection does not change QPE intensities across the lead times, whereas S-PROG filters the 413 

observed QPE field, leading to smoother QPN field and to an underestimation of precipitation 414 

for persistent and heavy events. This results in advection mimicking better the QPE than S-415 

PROG, especially over our catchment set where the July 2021 event was persistent and 416 

heavy. Overall, QPN had better success in reproducing the average precipitation for the 417 

catchments drained by the Rur at Monschau and the Erft than for the catchments drained by 418 

the Kyll and the Ahr. The variability in the ensemble errors of STEPS increased with 419 

increasing lead time. In addition, the errors of the STEPS method bracketed those of the two 420 

deterministic methods except for some cases where the advection showed a lower error than 421 

the whole STEPS ensemble. The evolution of the errors does not indicate a dependency on 422 

catchment size, although the largest catchment (Erft at Neubrueck) showed lower MAE 423 

errors for a lead time of 3 h. The variability of errors across the catchments reflects the effect 424 

of their location with respect to the precipitation field. 425 



23 

File generated with AMS Word template 2.0 

 426 

Fig. 5. Mean absolute errors between observed precipitation (QPE) and QPN estimated 427 

using advection, S-PROG, and STEPS at the scale of each catchment. LT refers to lead time. 428 

b. Added hydrological value of QPN 429 

To investigate the added value of the tested QPN methods from a hydrological point of 430 

view, we first show in subsection 4.b.1 the hindcasted hydrographs using RADOLAN and the 431 

QPE product RAVKDP for the 14 July 2021 event (Fig. 6) based on which the quality of the 432 

forecasted hydrographs is estimated using NSE (Fig. 7). Second, in subsection 4.b.2, we 433 

show the skill of the QPN methods computed using the CRPS between the corresponding 434 

forecasted hydrographs and the hindcasted hydrograph using QPE, with respect to the 435 

benchmarks of the hydrological persistence or the zero-precipitation nowcasts (Figs. 8 and 9). 436 
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Finally, in subsection 4.b.3, we show the gains in lead time obtained using either the 437 

efficiency-based approach (with NSE) or the skill-based approach (with CRPS) and 438 

depending on the benchmark (hydrological persistence or zero-precipitation nowcasts; Fig. 439 

10). 440 

1) HINDCASTED HYDROGRAPHS AND QUALITY OF THE FORECASTED HYDROGRAPHS 441 

To illustrate the dynamics of the catchment responses to the extreme rainfall event of 14 442 

July 2021, simulated hydrographs using RADOLAN (prior to 14 July 2021) and the QPE 443 

product RAVKDP (for 14 July 2021) by GR4H and ParFlowCLM are presented in Fig. 6. 444 

They indicate that the highest recorded peak flow prior to July 2021 (in orange dashed lines) 445 

was surpassed by model simulations at least once in all the catchments except the Rur at 446 

Monschau. However, where available, the last measured peak flow before the unavailability 447 

of records was surpassed by model simulations only for the catchments drained by the Ahr 448 

river. Qualitatively, GR4H and ParFlowCLM agreed for the catchments drained by the Ahr 449 

and the Kyll, whereas they significantly disagreed over the Erft and the Rur. Finally, the 450 

spread in the GR4H simulations reflects the large uncertainty in simulated hydrographs due 451 

to parameter uncertainty (Saadi et al. 2023). 452 
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 453 

Fig. 6. Simulated hydrographs for the July 2021 events using 12 parameter sets with 454 

GR4H (shaded area in green) and one parameter set with ParFlowCLM (in black). Orange 455 

dashed lines indicate the highest recorded peak flow (QHistPeak) prior to July 2021. Subject to 456 

availability, red dashed horizontal lines indicate the reported last measured peak flows before 457 

the failure of the monitoring devices (QLastMes), and red dashed vertical lines their timings. 458 

Hydrographs are simulated using the QPE product RAVKDP on 14 July 2021 and 459 

RADOLAN for the remaining time steps. For GR4H, the shaded area is delimited by the min-460 

max of the simulations at each time step using 12 parameter sets for each catchment. 461 

From the hydrological viewpoint, the three QPN methods yielded very similar 462 

hydrological forecasts across the seven catchments, as suggested by their NSE scores in Fig. 463 

7. At the threshold of NSEth = 0.9, the three methods yielded satisfactory hydrological 464 

forecasts for lead times ranging from 1 up to 5 h (GR4H for the Erft at Neubrueck, 465 

ParFlowCLM for the Rur at Monschau). The benchmark of the hydrological persistence (Q) 466 

obtained the fastest decreasing NSE curves, which is expected given its limits for a highly 467 

variable catchment response during the event. However, the benchmark of the zero-468 

precipitation nowcasts (ZNC) succeeded in yielding better hydrological forecasts using 469 

ParFlowCLM for the catchments drained by the Kyll. For these two catchments, the use of 470 
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the QPN products led to early increases of the forecasted hydrographs with respect to the 471 

hindcasted hydrograph, resulting in deteriorated NSE values compared with the ZNC 472 

benchmark in the early lead times. Finally, the QPN methods led to more satisfactory 473 

hydrological forecasts when using GR4H than when using ParFlowCLM, except for the Rur 474 

at Monschau. 475 

 476 

Fig. 7. Evolution of the Nash-Sutcliffe Efficiency (NSE) of the forecasted hydrographs 477 

using the QPN methods and the benchmarks (hydrological persistence Q, zero-precipitation 478 

nowcasts ZNC) with respect to lead time. Red dashed lines indicate the NSE threshold NSEth 479 

= 0.9. For GR4H, the curves represent the median score from the 12 simulations. For STEPS, 480 

the curves represent the median score from the 20 members. 481 
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2) SKILL OF THE QPN METHODS 482 

The three QPN methods were also similar in terms of their skill with respect to the 483 

benchmark of hydrological persistence, as can be seen in Fig. 8. The skill indicates that using 484 

QPN yielded better forecasts than the persistence model for lead times higher than 30 h, 485 

except for the Rur at Monschau where the skill dropped after only 16 h. Note that this should 486 

be interpreted in the light of the quality of the forecasted hydrographs by both the QPN 487 

methods and the benchmark of the hydrological persistence, which in all cases had negative 488 

NSE values after a lead time of 12 h (see Fig. 7). The evolution of the skill was somewhat 489 

distinct for each catchment, but similar for the catchments drained by the same river, which 490 

indicates a dependency on location with respect to the precipitation event. The rebound in the 491 

skill curve for the catchments drained by the Ahr river may reflect the change in the 492 

forecasted part of the hydrograph from the rising to the falling limb. Finally, both models 493 

showed similar evaluation of the three QPN methods, with GR4H showing slightly higher 494 

skill scores than ParFlowCLM at the very short lead times. 495 
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 496 

Fig. 8. Evolution of the skill of the forecasted hydrographs using QPN with respect to a 497 

hydrological persistence benchmark (SkillCPRS, Q) over the seven catchments. Dashed red 498 

lines indicate a skill of 0.5, i.e. using QPN is as good as the hydrological persistence model. 499 

For GR4H, the curves represent the median score from the 12 simulations. 500 

Changing the benchmark to zero-precipitation nowcasts (ZNC) had a limited impact on 501 

the skill of the tested QPN, as suggested by Fig. 9. Namely, the skill slightly decreased 502 

compared with the hydrological persistence in Fig. 8, indicating that the ZNC is a more 503 

challenging benchmark to beat than the hydrological persistence. This is somewhat expected 504 

given the better performances of ZNC compared with hydrological persistence, as can be 505 

seen in Fig. 7. This is not however the case for all catchments. The Rur at Monschau 506 

indicates that the ZNC benchmark is easier to outperform than the hydrological persistence. 507 
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The rebound effect observed in Fig. 8 for the Ahr catchments disappeared with the ZNC 508 

benchmark, as all QPN tend to be equal to ZNC after the end of the event. 509 

 510 

Fig. 9. Evolution of the skill of the forecasted hydrographs using QPN with respect to 511 

forecasted hydrographs with zero-precipitation nowcasts (ZNC). Red dashed lines indicate a 512 

skill of 0.5, i.e. using QPN is as good as feeding the models with ZNC. For GR4H, the curves 513 

represent the median score from the 12 simulations. 514 

3) GAINS IN LEAD TIME WITH RESPECT TO THE BENCHMARKS 515 

The gain in lead time reflects the dependency on the evaluation method, the benchmark 516 

and the chosen threshold for NSE or for the skill, as shown in Fig. 10. Based on NSE and for 517 

a threshold at NSEth = 0.9 (Figs. 10a and 10b), gains in lead time ranged between 1 h and 5 h 518 

with GR4H (on average) and between 0 h and 5 h with ParFlowCLM with respect to the 519 
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hydrological persistence. With respect to ZNC, gains ranged between 0 h and 4 h with GR4H 520 

(on average) and in some cases there were losses with ParFlowCLM, specifically in the 521 

catchments drained by the Kyll and the Ahr at Muesch. Changing the threshold from NSEth = 522 

0.9 to NSEth = 0.5 led to increases in the gains only with respect to the hydrological 523 

persistence (Figs. 10c and 10d). In this case, the gains ranged between 2 h and 8 h with 524 

GR4H and between 0 h and 7 h with ParFlowCLM. With respect to ZNC, changing the NSE 525 

threshold from 0.9 to 0.5 resulted in poorer gains, especially for ParFlowCLM (range: -3 h to 526 

4 h). This is caused by faster decreases in the quality of the forecasted hydrographs with the 527 

QPN methods compared with those forecasted with ZNC (Fig. 7) 528 

 529 

Fig. 10. Gain in lead time based on Nash-Sutcliffe score with respect to hydrological 530 

persistence (on the left) and zero-precipitation nowcasts (on the right) as benchmarks with a 531 
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score threshold at 0.9 for (a) and (b), and at 0.5 for (c) and (d). Lead time (in hours) up to 532 

which using QPN was better than the benchmark (hydrological persistence on the left, zero-533 

precipitation nowcasts on the right) according to a skill threshold at 0.5 for (e) and (f), and at 534 

0.67 for (g) and (h). On the x-axis, catchments are ranked with decreasing Gravelius index 535 

from left to right. Note that the evolution of the skills was computed up to a maximum of 48 536 

h. 537 

Using the skill-based approach, choosing the default threshold (0.5, Figs. 10e and 10f) 538 

yielded much larger gains in lead time compared with a more demanding threshold (0.67, 539 

Figs. 10g and 10h). With a threshold of 0.5 (Figs. 10e and 10f), the improvements were up to 540 

48 h, the maximum range to which we limited our analysis, which should be interpreted in 541 

the light of the poor performances of the benchmarks (Fig. 7). With a threshold of 0.67, the 542 

use of QPN improved the forecast lead time by 4 h up to 9 h with GR4H, and by 1 h up to 12 543 

h with ParFlowCLM (Erft at Neubrueck, the largest catchment) with respect to the 544 

hydrological persistence as benchmark (Fig. 10g). With respect to ZNC (Fig. 10h), the 545 

improvements ranged between 1 h and 7 h with GR4H and between 0 h and 5 h with 546 

ParFlowCLM.  547 

Finally, we found no consistent pattern in the gains in lead time with respect to catchment 548 

area (not show here). However, when the catchments are ranked by their Gravelius index (Eq. 549 

8), the added value of the QPN methods with respect to the hydrological persistence using 550 

ParFlowCLM increased as the Gravelius index decreased (Figs. 10a, 10c and 10g). This 551 

suggests that with ParFlowCLM, using the QPN methods was more beneficial for catchments 552 

with a more compact shape. This dependency on the catchment shape was not detectable with 553 

GR4H.  554 

5. Discussion 555 

For the major flooding event of July 2021 in our study region, the three tested QPN 556 

products obtained very similar performances in terms of both the reproduction of observed 557 

precipitation and hydrological forecasting. The highly similar performances of the three 558 

methods can be attributed to two factors. First, the aggregation to the hourly time step may 559 

have filtered out the differences between the three methods, which are reported by previous 560 

studies to be in the order of few to tens of minutes (Ayzel et al. 2019; Berenguer et al. 2005; 561 

Heuvelink et al. 2020; Imhoff et al. 2020). Fig. 3 shows however that the methods are already 562 

similar at 5-min resolution, with a slightly better performance for S-PROG. Second, the 563 

persistent nature of the event (see event hyetographs in Fig. 6) might have made it as easy to 564 
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be forecasted by simple nowcasting methods (advection) as by more sophisticated ones (S-565 

PROG and STEPS). The poor performances of the STEPS ensemble compared with the 566 

ensemble mean STEPS-m suggests that the perturbations of the deterministic forecast got 567 

penalized for this event (Heuvelink et al. 2020). In addition, comparing the spread in the 568 

STEPS ensemble with the deterministic STEPS-m or S-PROG forecasts suggests that the 569 

STEPS ensemble might have underestimated the uncertainty in the evolution of the 570 

precipitation field for this event (Foresti et al. 2016). Nevertheless, the similarity in terms of 571 

performances between STEPS and the deterministic methods should not undermine its 572 

benefits in providing probabilistic nowcasts, which are of greater value for decision makers 573 

than deterministic ones (Fundel et al. 2019; Merz et al. 2020). 574 

Overall, our results show that the QPN methods improved the hydrological forecasts 575 

compared with hydrological persistence or with the zero-precipitation nowcasts. Previous 576 

studies such as Heuvelink et al. (2020), Berenguer et al. (2005), and Vivoni et al. (2006) 577 

reported improvements of 2 to 6 h for catchments of ~103 km2 of size. First, some of the 578 

differences may be explained by the hydroclimatic settings of the studied catchments and/or 579 

their characteristic response times (or concentration times). Berenguer et al. (2005) studied 580 

catchments located in the Mediterranean region (north-east of Spain), for which the fast 581 

response may explain the absence of significant improvements using QPN beyond 2 h. On 582 

the contrary, Heuvelink et al. (2020) showed that significant improvements in the 583 

hydrological forecasts can be obtained when using 3-h long QPN for catchments under 584 

humid, temperate climate (Netherlands) and characterized by slower responses than 585 

Mediterranean catchments. In our case, the improvements are in general limited to 4 h with 586 

respect to a benchmark of zero-precipitation nowcasts, with a high variability from one 587 

catchment to another (Figs. 10b and 10d). For some catchments (drained by the Kyll and the 588 

Ahr at Muesch), the QPN methods showed worse performances compared with the zero-589 

precipitation nowcasts, especially with ParFlowCLM. The variability in the performances of 590 

the QPN from one catchment to another can be either explained by the location of each 591 

catchment within the precipitation field, or their properties that modulate the delay between 592 

the precipitation and the catchment response. 593 

Second, some of the differences can be attributed to methodological choices. Using the 594 

same approach as in Heuvelink et al. (2020) and Berenguer et al. (2005) based on the quality 595 

of the forecasted hydrographs measured by NSE, we obtained similar improvements up to 4-5 596 
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h with an NSE threshold at 0.9, depending on the benchmark (Figs. 10a and 10b). However, 597 

this NSE-based approach suffers from the arbitrary selection of an efficiency threshold, 598 

which, according to Figs. 10a to 10d, impacted the estimation of the added value of QPN, 599 

especially with respect to the hydrological persistence as benchmark. We attempted to 600 

circumvent this issue by following a skill-based approach, which provides an a-priori 601 

objective threshold (i.e., 0.5, see Eq. 7), but leads to too optimistic results and suggests that 602 

the skill of QPN lasts for much longer lead times (Figs. 8 and 9, except for the Rur at 603 

Monschau in Fig. 8 and the catchments drained by the Kyll in Fig. 9). By adopting a more 604 

demanding threshold such as 0.67, our skill-based approach leads to results that agree with 605 

previous studies (Figs. 10g and 10h; Heuvelink et al. 2020; Berenguer et al. 2005). The 606 

combination of a skill-based approach with an analysis of the quality of forecasted 607 

hydrographs helped objectively estimate the added value of the QPN products and avoid a 608 

distorted evaluation when the benchmark performs poorly. In all cases, the obtained 609 

improvements may look small, but they can still be of high value for emergency management 610 

and the fire services involved in event response (Speight et al. 2021). However, if observed 611 

hydrographs of the event were available and used, they would probably have led to lower 612 

added value of QPN because of additional errors resulting from the disagreement between the 613 

QPE product and corresponding hindcasted hydrographs with the observed precipitation and 614 

observed hydrographs, respectively. 615 

Several studies reported a dependency of improvements on the catchment size and the 616 

event type (convective vs. stratiform; Berenguer et al., 2005; Heuvelink et al., 2020; Imhoff 617 

et al., 2020). We showed that, in addition, there is also a dependency on methodological 618 

choices, namely the chosen benchmark and the applied hydrological model. The dependency 619 

on the benchmark used to estimate the skill was visible (albeit to a limited extent) from 620 

comparing Figs. 8 and 9, which warns that choosing a simple model (such as hydrological 621 

persistence) may lead to overly optimistic interpretations of the improvements (Pappenberger 622 

et al. 2015b). The dependency on catchment size was hardly visible over our catchment set 623 

for the studied event, except for the largest catchment (Erft at Neubrueck, 1668 km2) which 624 

showed a slow decrease in the skill with respect to lead time. The low sensitivity of the skills 625 

to catchment size is perhaps a result of working on a single event, which emphasizes the 626 

impact of the differences of precipitation amounts registered in the study catchments. 627 

Nevertheless, we noticed a dependency on catchment shape when the hydrological 628 

persistence is chosen as benchmark and with ParFlowCLM as a hydrological model (Figs. 629 
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10a, 10c and 10g), but not with GR4H. The fact that GR4H did not mirror the effect of 630 

catchment shape can be explained by the sensitivity of GR4H parameters to the 631 

anthropogenic effects through calibration on historical observations (Saadi et al. 2020), which 632 

are behind the large differences between model simulations for the Erft at Neubrueck and the 633 

Rur at Monschau in Fig. 6. Accounting for the anthropogenic effects by GR4H (even 634 

implicitly) may have buffered the effect of catchment shape on the catchment response.  635 

The dependency of the skill on the catchment response, i.e. the event hydrograph, was 636 

accentuated by the adoption of the hydrological persistence as benchmark. Since the 637 

reference event hydrograph is the one simulated by the hydrological models using the QPE, 638 

the NSE curves in Fig. 7 suggest that the flashier and the higher the hindcasted peak flow, the 639 

higher the benefit of the use of QPN. This can be seen from comparing the hindcasted 640 

hydrographs by GR4H and ParFlowCLM for the Erft at Bliesheim (Fig. 6), where GR4H 641 

hindcasted an earlier peak flow than ParFlowCLM, mirrored by better NSE values for the 642 

three QPN methods when GR4H was applied for this catchment (Fig. 7). Conversely, the 643 

simulated hydrograph by GR4H for the Rur at Monschau was smoother than the one 644 

simulated by ParFlowCLM, which was accompanied by better gains in lead times for QPN 645 

with ParFlowCLM (Fig. 7). The smoother hydrographs led to less gains because the use of 646 

QPN led to earlier rises in the forecasted hydrographs, which penalized their use. These 647 

differences also reflect the errors of QPN with respect to the QPE product, which are 648 

highlighted by the distributed ParFlowCLM for the catchments drained by the Kyll, where 649 

the zero-precipitation nowcasts showed similar or better NSE scores at the early time steps 650 

(Fig. 7).  651 

Nevertheless, the choice of the adopted hydrological model did not much alter the 652 

conclusions regarding the similarity of the tested QPN methods. The agreement between 653 

QPN according to the distributed ParFlowCLM model suggests that the methods agreed also 654 

in the spatial distribution of precipitation for this particular event at least from a hydrological 655 

point of view, in line with the MAE patterns in Fig. 4. Effects of uncertainties in parameter 656 

estimation of the hydrological models were not included here, but they would be relatively 657 

low given the general agreement of the three methods in terms of predicting the observed 658 

QPE. Effects of uncertainties in initial moisture conditions were minimized by the long spin-659 

up period of both GR4H and ParFlowCLM models prior to the event. 660 
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Focusing only on one event limits our investigation of other factors that could have 661 

impacted the skill of the tested nowcasting methods, such as the type of the event and the 662 

season (Imhoff et al. 2020). The absence of observed discharge values limits the evaluation of 663 

the accuracy of model simulations, but that should not undermine the obtained improvements 664 

by the use of QPN. Quantifying the added value of the tested QPN with respect to a NWP-665 

based benchmark for this event would give more convincing results from an operational point 666 

of view, given the relative poorness of the adopted benchmarks in our study. Finally, the 667 

relatively heavy cost of model simulations with ParFlowCLM (especially when applied with 668 

the probabilistic STEPS nowcasts) hampers its test with more parameter sets, which could 669 

have an impact on the evaluation of the skill, especially with respect to the hydrological 670 

persistence as a benchmark. 671 

6. Conclusions and future work 672 

We investigated the usefulness of using precipitation nowcasts to improve the skill of two 673 

hydrological models in forecasting the response of seven catchments located in the west of 674 

Germany for the disastrous July 2021 event. We evaluated three precipitation nowcasting 675 

techniques, namely the Lagrangian advection, S-PROG, and the probabilistic method STEPS. 676 

Our evaluation consisted of analyzing their ability in forecasting the observed precipitation at 677 

5-min and hourly time steps, then in improving the ability of two contrasting hydrological 678 

models, GR4H and ParFlowCLM, in reproducing the simulated hydrographs by the 679 

hydrological models using observed precipitation (or hindcasted hydrographs). For the July 680 

2021 events in our study region, our main conclusions are: 681 

1. The three methods improved the forecasting skill of the hydrological models with 682 

respect to two benchmarks, the hydrological persistence and the zero-precipitation 683 

nowcasts. These improvements varied from one catchment to another, and reached 684 

up to 4-5 h according to an NSE at 0.9 and up to 12 h according to the CRPS skill 685 

at a threshold of 0.67 (i.e., the use of QPN halved the forecasting errors of the 686 

benchmarks). 687 

2. The three methods obtained very similar performances in terms of both 688 

precipitation and discharge forecasting. In particular, the deterministic methods 689 

(advection and S-PROG) performed as good as the average/median probabilistic 690 

one (STEPS). 691 
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3. The use of a conceptual, lumped model (GR4H) led to similar conclusions as with 692 

a physically-based, 3D-distributed model (ParFlowCLM). However, the gains in 693 

lead time were on average lower with ParFlowCLM than with GR4H. The 694 

differences between the two models can be attributed to the anthropogenic 695 

influences in the catchments, which are implicitly accounted for by GR4H through 696 

its calibrated parameters on historical observations. 697 

4. The choice of the evaluation method, the benchmark and the skill threshold 698 

impacted the estimation of the added value of the QPN methods. 699 

As future work, more robust conclusions would be obtained by considering a large 700 

sample of events with a variety of seasons and typologies. Increasing the horizon of the input 701 

precipitation to the models with quantitative precipitation forecasts that make use of 702 

(convection-permitting) NWP outputs through blending approaches (Lovat et al. 2022; 703 

Speight et al. 2021; Clark et al. 2016) would shed more light on the ability of the current 704 

hydrometeorological chains in hedging the damages by issuing useful and timely flood 705 

warnings. Quantifying the economic gains from including precipitation nowcasts (Le Bihan 706 

et al. 2017; Pappenberger et al. 2015a) would provide more convincing arguments about their 707 

usefulness. Finally, the added value of the nowcasting techniques presented in this work 708 

motivates to exploit their benefit in generating nationwide and useful short-time forecasts for 709 

better disaster preparedness (Reinoso-Rondinel et al. 2022). 710 
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