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ABSTRACT

Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts
especially for lead times up to 12 hours, but their evaluation depends on a variety of factors,
namely the choice of the hydrological model and the benchmark. We tested three
precipitation nowcasting techniques based on radar observations for the disastrous mid-July
2021 event in seven German catchments (140-1670 km?). Two deterministic [advection-
based and Spectral Prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble
Prediction System (STEPS)] QPN with maximum lead time of 3 h were used as input to two
hydrological models: a physically-based, 3D-distributed model (ParFlowCLM) and a
conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN
compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For
the 14 July 2021 event, we obtained the following key results: (1) According to the quality of
the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h)
compared with adopting zero-precipitation nowcasts (hydrological persistence) as a
benchmark. Using a skill-based approach, obtained improvements were up to 7-12 h
depending on the benchmark. (2) The three QPN techniques obtained similar performances
regardless of the applied hydrological model. (3) Using zero-precipitation nowcasts instead of
hydrological persistence as benchmark reduced the added value of QPN. These results
highlight the need for combining a skill-based approach with an analysis of the quality of
forecasted hydrographs to rigorously estimate the added value of QPN.

Keywords: Extreme events; Ensembles; Nowcasting; Hydrologic models; Model

evaluation/performance; Flood events

1. Introduction

Precipitation extremes are intensifying due to human-driven climate change (Fowler et al.
2021). This means more severe and more frequent flooding events, which will lead to costlier
damages to infrastructures and heavier human losses (Dottori et al. 2018; Dougherty and
Rasmussen 2020). To mitigate these damages, operational and efficient flood warning
systems are needed more than ever (Pappenberger et al. 2015a). These provide flood
forecasts by relying on hydrological models fed with meteorological forecasts from
numerical weather prediction (NWP) systems (Alfieri et al. 2012; Cloke and Pappenberger
2009). With ensemble modeling, data assimilation, and improved representation of physical
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processes enabled by the development of convection-permitting schemes (Speight et al. 2021;
Clark et al. 2016), the skill of NWP has significantly increased during the last decades (Bauer
et al. 2015), making it the best input for flood forecasting at the regional scale and for long
horizons (> 6h; Lin et al., 2005). However, their use for short lead times (< 6h) in small-scale
applications (enabled by using convection-permitting NWP) is hindered by the time needed

for their spin-up and their too coarse spatial resolution for hydrological needs.

Statistical extrapolation of the up-to-date weather radar observations (or nowcasting) can
fill this gap by providing quantitative precipitation nowcasts (QPN) at high spatial and
temporal resolutions (up to 1 km? and 5 min, respectively; see for example Reinoso-Rondinel
et al. 2022), which can outperform the NWP for short lead times (Berenguer et al. 2012). This
level of detail is particularly useful to forecast flash floods from convective precipitation
events especially in urban areas and rapidly responding catchments (Berenguer et al. 2005;
Foresti et al. 2016; Ochoa-Rodriguez et al. 2015). Most QPN are generated by (1) estimating
the motion field from remote sensing products, such as radar or satellite images, and (2)
applying this motion field to displace the most recently observed precipitation field (Ayzel et
al. 2019). These two steps form the core of most deterministic nowcasting techniques such as
TREC (Tracking Radar Echo with Correlations, Rinehart and Garvey 1978), MAPLE
(McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation; Germann and
Zawadzki 2002), S-PROG (Spectral Prognosis; Seed 2003), and SWIRLS (Short-range
Warning of Intense Rainstorms in Localized Systems; Woo and Wong 2017). To account for
uncertainties in the motion field as well as in the evolution of the precipitation cells, many
techniques adopt a stochastic approach by adding random perturbations based on
corresponding spatiotemporal properties to produce an equally likely ensemble of QPN.
Examples of these probabilistic techniques include STEPS (Bowler et al. 2006), STEPS-BE
(STEPS system for Belgium; Foresti et al. 2016), SBMcast (String of Beads model;
Berenguer et al. 2011), and ENS (Sokol et al. 2017).

To evaluate the skill of QPN, several studies quantified the ability of nowcasting
techniques to provide accurate short-term predictions of observed precipitation (see Table 1;
Berenguer et al. 2011; Atencia and Zawadzki 2014, 2015; Mejsnar et al. 2018; Imhoff et al.
2020; Reinoso-Rondinel et al. 2022). Their approach compares the predicted precipitation
from QPN for a given lead time with quantitative precipitation estimates (QPE) obtained

from radar observations. These studies focused on improving the nowcasting methods to
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account for uncertainties in the prediction of precipitation fields and highlighted the limits of
the applied methods in the case of warm-season and convective events (Mejsnar et al. 2018).
To characterize and enhance the hydrological predictability of associated flash floods, Imhoff
et al. (2020) analyzed the effect of catchment properties and event characteristics (such as the
size and location) on the nowcasting skill. Towards a nationwide nowcasting system,
Reinoso-Rondinel et al. (2022) improved the S-PROG technique by introducing spatially
localized parameters for the inherent auto-regressive model and evaluated the skill with
respect to radar-based QPE for 10 observed rain events in Germany.

An alternative evaluation framework exploits (ensemble) QPN to serve as input to a
hydrological model (see Table 1; Salek et al. 2006; Berenguer et al. 2005; Vivoni et al. 2006;
Xuan et al. 2014; Heuvelink et al. 2020; Lovat et al. 2022; Imhoff et al. 2022). The resulting
simulated discharge time series are then compared to a reference discharge time series, which
can be either the observed discharge, if available, or the simulated discharge by the
hydrological model with QPE (i.e., observed precipitation) as input precipitation. This
framework is more relevant for flood forecasting applications since it quantifies the added
value of QPN, with respect to e.g. zero-precipitation nowcasts, in improving the lead time of
hydrological forecasts. All studies found that radar-based QPN enhanced the forecasting skill
achieved by the hydrological model, especially when blended with NWP forecasts (Lovat et
al. 2022). Moreover, the forecasting skill depended on the physical properties of the
catchment (such as size and topography), the type of the event (convective vs. stratiform),

and the season (rain vs. snow).

Reference QPN method Location Hydrological model
Berenguer et al. SBMcast Barcelona, Spain —
(2011) (probabilistic)

Atencia and Zawadzki
(2014, 2015)

Two probabilistic
nowecasting methods

United States

Mejsnar et al. (2018)

COTREC
(deterministic; Li et al.
1995)

Czech Republic

Imhoff et al. (2020)

Four deterministic and
probabilistic methods,
namely Sparse,
DenseRotation, S-
PROG, and STEPS,
implemented within
Rainymotion (Ayzel et
al. 2019) and
pySTEPS (Pulkkinen
et al. 2019)

Twelve catchments in
the Netherlands
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1995)

Reinoso-Rondinel et S-PROG Germany —
al. (2022) (deterministic; Seed
2003)
Berenguer et al. S-PROG Barcelona, Spain DiCHiTop
(2005) (deterministic; Seed (distributed)
2003), Lagrangian
advection and Eulerian
persistence
(deterministic)
Salek et al. (2006) COTREC Czech Republic HYDROG
(deterministic; Li et al. (distributed)

Vivoni et al. (2006)

STNM algorithm
(deterministic;
Wolfson et al. 1999)

Midwestern United
States

tRIBS (physically-
based, distributed)

Xuan et al. (2014)

STEPS (probabilistic;
Bowler et al. 2006)

One catchment in the
United Kingdom

PDM (lumped)

Heuvelink et al.
(2020)

Lagrangian
persistence/COTREC
(deterministic; Li et al.
1995) and SBMcast
(probabilistic;
Berenguer et al. 2011)

Three catchments in
the Netherlands

WALRUS (lumped)

Lovat et al. (2022)

AROME-NWC
(deterministic, NWP-
based; Auger et al.
2015) and PIAF
(combination of radar
nowecasts and NWP;
Moisselin et al. 2019)

Nineteen catchments
in south-eastern
France

ISBA-TOP
(distributed)

Imhoff et al (2022)

Four deterministic and
probabilistic methods,
namely Sparse,
DenseRotation, S-
PROG, and STEPS,
implemented within
Rainymotion (Ayzel et
al. 2019) and
pySTEPS (Pulkkinen
et al. 2019)

Twelve catchments in
the Netherlands

SOBEK (semi-
distributed) and
WALRUS (lumped)

Table 1. Summary of applications using deterministic and probabilistic precipitation
nowcasting methods with and without hydrological evaluation.

Despite these findings, previous studies did not focus on the evaluation methodology of

the nowecasting techniques. Namely, all of the listed studies (except Imhoff et al. 2022)

adopted a single modeling approach (i.e., either lumped or distributed, conceptual or

physically-based), which did not allow for considering how the choice of the hydrological

model structure impacted the evaluation of the nowcasting techniques (such as done by

Poméon et al., 2020). In addition, the impact of the benchmark nowcasting model (such as

zero-precipitation nowcasts or hydrological persistence) on the forecasting skill remains
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poorly investigated while it can have significant impact on the estimated added value of QPN
(Pappenberger et al. 2015b).

To tackle these gaps, we evaluated one probabilistic (STEPS) and two deterministic
nowecasting techniques (advection-based and S-PROG) by measuring their ability in
forecasting simulated hydrographs with QPE. Our study focuses on the disastrous mid-July
2021 events in seven catchments located in western Germany. These events caused more than
220 deaths and costed up to €32.05 billion in total losses in Germany alone, making them one
of the most severe natural disasters caused by heavy rain and flooding in Germany (Mohr et
al. 2023). We adopted a novel multi-modeling approach by evaluating QPN as inputs to a
conceptual, lumped model (GR4H) and to a physically-based, 3D-distributed model
(ParFlowCLM). Thus, the aim of this study is to investigate whether a more detailed
representation of hydrological processes leads to a better discrimination of QPN compared to
a simpler, lumped one. Moreover, we checked whether different choices of skill evaluation

and benchmarks impact the estimation of the added value of the nowcasting techniques.

This paper is organized as follows. Section 2 presents the case study, the catchment set,
and the QPE product used to produce the QPN. Section 3 introduces the tested nowcasting
techniques, the hydrological models and the evaluation framework, while Sections 4 and 5

comment and discuss the results. Finally, Section 6 concludes our study.

2. Catchment set and QPE product

In July 2021, sustained stratiform rain connected to a cut-off low pressure system
(Junghénel et al. 2021) led to record-breaking precipitation amounts and disastrous floods
(Kreienkamp et al. 2021; Mohr et al. 2023), especially over relatively high altitudes at the
Eifel range on the left bank of the Rhine river and the Bergisches Land on the right bank
(Figs. 1 and 2). On 14 July 2021, observed total precipitation sums exceeded 160 mm at some
rain gauges (Fig. 2c¢), which is equivalent to two to three months of accumulated precipitation
based on the annual averages (i.e., by dividing 160 mm by the annual averages listed in Table
2). Since rain gauges do not provide a detailed description of the spatial variability of
precipitation, measurements from four polarimetric C-band radars (located at Essen,
Flechtdorf, Neuheilenbach, and Offenthal; Fig. 2a), operated by the German Weather Service
(DWD), were exploited to derive a gridded QPE product for the 14 July 2021 (Fig. 2b) with
1-km horizontal resolution and 5-min temporal resolution. This hybrid product combines
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146  precipitation estimates derived from specific attenuation at vertical polarization Ay, R(Av),
147  with retrievals of specific differential phase Kpp for horizontal reflectivity rates Zn higher

148  than 40 dBZ, R(Kop). This product clearly outperformed retrievals based on horizontal

149  reflectivity alone (Chen et al. 2021; Saadi et al. 2023). The hybrid QPE product, referred to as
150 RAVKDP in the following, served as input for QPN algorithms.
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151 ’ JLongitude © . Catchment area (%)

152 Fig. 1. (a) Location, topography and hydrographic network of study catchments, where

153  contours indicate the catchment polygons, and (b) hypsometric curves of the catchment set.
154  Negative elevations are due to the existence of open-pit mines in the region.
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Fig. 2. (a) Location of the four C-band radars (Essen, Flechtdorf, Neuheilenbach, and
Offenthal) operated by the German Weather Service (DWD) and used to derive the QPE
product RAVKDP. (b) Total precipitation amounts on 14 July 2021 (from 0000 UTC 14 July
2021 to 0000 UTC 15 July 2021) estimated from the radar-based QPE RAVKDP and (c)
from 63 rain gauges. For the 63 rain gauges, the ratio of total precipitation from RAVKDP to
that from the rain gauge varied between 0.27 and 3.00, with a median value of 0.72. The light
grey contours indicate the borders with the neighboring countries (The Netherlands, Belgium,
Luxembourg, and France).

To hydrologically evaluate the benefits of QPN, we selected a set of seven catchments
located in western Germany that drain parts of the Eifel mountain range (Fig. 1a),
characterized by a rolling plateau at elevations up to 750 m a.s.l. (Fig. 1b). These catchments
have areas ranging between 140 and 1670 km? (Table 2). Three of the seven catchments are
located in the federal state of North Rhine-Westphalia and are drained by the Erft and the Rur
rivers. The remaining four catchments are located in the federal state of Rhineland-Palatinate
and are drained by the Ahr and the Kyll rivers. The region is characterized by a temperate
climate under maritime influence, which is reflected by the range of the average annual
precipitation amounts (710 to 1070 mm/yr) and the values of the aridity index as defined by
the United Nations Environment Programme (1.13 to 1.92; UNEP 1992). The land cover of
the catchments is mainly occupied by forest and agricultural areas according to the CORINE
Land Cover database of 2018 (Langanke et al. 2016). Soils are dominated by sand (34%-
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177  41%) and silt contents (29%-38%; Panagos, 2006). To estimate total precipitation amounts on
178 14 July 2021 at the catchment scale, we applied the Thiessen polygon method on

179  measurements from rain gauges and on RAVKDP. Estimated precipitation amounts from rain
180  gauges varied between 66 and 121 mm across our catchment set (Table 2), reflecting the

181  severity of the event and its variability from one catchment to another. Based on RAVKDP,
182  obtained estimates totaled only 34 mm to 90 mm (Table 2), indicating an underestimation
183  with respect to estimated amounts from rain gauges. This underestimation is partly attributed
184  to collision-coalescence processes that took place close to the surface, i.e. below the heights
185  monitored by the radars (Saadi et al. 2023; Chen et al. 2022).

Total
precipitation
amount on 14
Area | Average Aridity | Average ) July 2021
) o ) ) Artificial® | Agricultural® | Forest®
River? (km? | precipitation | index® | discharge (mm) from
(%) (%) (%) .
) (mm/yr) O] (mm/yr) RAVKDP/rain
gauges
(number of
rain gauges)
180
Erft at 740 (2006-
1668 1.16 (2000- 17.7 64.3 17.8 66/99 (13)
Neubrueck 2021)
2020)
830 (2006 370
Kyllat - g49 141 | (1967- |54 51.9 427 | 80/103 (10)
Kordel 2021)
2021)
750 (2006 260
Ahr at 757 1.27 (1945- 35 395 57 89/108 (7)
Altenahr 2021)
2021)
710 (2006 130
Erftat 1 g5) 113 (2000- | 12.6 59.1 282 | 88/108 (7)
Bliesheim 2021)
2020)
890 (2006 450
Kyll at 473 1.54 (1972- 4 47.7 48.2 87/115 (7)
Densborn 2021)
2021)
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280
790 (2006-
Ahr at 346 ( 1.34 (1972- 4 52.9 431 | 90/121 (6)
Muesch 2021)
2021)
760
144 1.92 (2000- 6.1 25.4 62.9 | 34/66 (1)
Monschau 2021)
2021)

aAll  catchments contain  at least one reservoir (lake or dam) according to the database at
https://dewiki.de/Lexikon/Liste_von_Talsperren_in_Deutschland (in German, last access: 14 April 2023).

bThe aridity index was computed as the ratio of average annual precipitation to average annual atmospheric evaporative
demand, which we expressed as the average annual potential evapotranspiration (UNEP 1992). Potential
evapotranspiration was computed using a temperature-based formula (Oudin et al. 2005).

“These metrics were computed based on the CORINE Land Cover classification of the Copernicus Land Monitoring
Service (Langanke et al. 2016). They correspond to the proportion of the catchment that is occupied by the classes
belonging to (1) “Artificial Surfaces” for Artificial, (2) “Agricultural areas” for Agricultural, and (3) “Forest and
seminatural areas” for Forest. See https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-
nomenclature-guidelines/html (last access: 14 April 2023).

186 Table 2. Summary of catchment characteristics. Catchment-average, total precipitation
187  amount on 14 July 2021 (from 0000 UTC 14 July 2021 to 0000 UTC 15 July 2021) are

188  extracted from RAVKDP, the radar-based QPE product, and from rain gauges using Thiessen
189  polygons. In the far-right column, the total number of rain gauges used for the 14 July 2021
190  for each catchment is provided between brackets.

191 3. Evaluation of the added value of QPN

192  a. Tested nowcasting techniques

193 Based on the QPE product RAVKDP, we computed 3-h long QPN with 1-km spatial and
194  5-min temporal resolution. In this study, three nowcasting strategies following Reinoso-
195  Rondinel et al. (2022) have been applied:

196 1. The deterministic method based on Lagrangian persistence (advection-based) assumes

197 a constant precipitation field (i.e., with no growth or decay) advected using a static

198 motion field. First, the motion field was estimated from the RAVKDP product using

199 the optimal-flow method DARTS (Ruzanski et al. 2011). Then, the latest observed

200 precipitation field is advected along the estimated motion trajectories for the next

201 three hours using a semi-Lagrangian backward scheme (Germann and Zawadzki

202 2002).

203 2. The deterministic method S-PROG (Spectral Prognosis; Seed, 2003) assumes that the

204 spatial scale of precipitation features is on par with its lifetime and thus its

205 predictability. This means that larger precipitation features tend to last longer and can
10

File generated with AMS Word template 2.0



https://dewiki.de/Lexikon/Liste_von_Talsperren_in_Deutschland
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html

206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226

227
228
229
230
231
232

233

234
235
236
237

be predicted with larger lead times. First, the precipitation field is decomposed into a
multiplicative cascade of spatial scales. Second, an autoregressive model (AR) is used
to model and forecast the temporal evolution and to advect each cascade level.
Finally, the nowcasted field is computed as the aggregation of the advected cascade
levels. This leads to a smoothing of the precipitation field as the small-scale, high-
frequency features tend to vanish with time according to the AR model. Compared
with Seed (2003), we kept the order of the AR model at 1 instead of 2, and we fixed
the number of levels of the multiplicative cascade at 6, resulting in the following
spatial scales of 900, 56, 20, 7, 3, and 1 km. Moreover, we used the precipitation field
instead of the reflectivity field. Since the precipitation field does not follow a
Gaussian distribution, the above processes were applied to the log-transformed values
of precipitation, which we assumed to have a near-Gaussian distribution. After
extrapolation, an inverse transformation was applied to the nowcasted precipitation

field. These choices follow the study by Reinoso-Rondinel et al. (2022).

3. The probabilistic method STEPS (Short-Term Ensemble Prediction System; Bowler
et al., 2006) builds on S-PROG by adding stochastic perturbations to account for the
uncertainties in the estimated motion field and the evolution of the precipitation cells.
More precisely, each cascade level is perturbed by Gaussian white noise that is
correlated with the spatial properties of the last observed precipitation field (Seed et
al. 2013), which leads to an ensemble of QPN. In our study, we considered an

ensemble of 20 members.

For each QPN method, we generated 3-h long time series of nowcasted precipitation each
5 min (i.e., at 0000 UTC, 0105 UTC, 0110 UTC 14 July 2021, etc.) with a temporal
resolution of 5 min. Since we chose to feed these QPN to hourly hydrological models, we
kept only QPN that were issued at round hours (i.e., at 0100 UTC, at 0200 UTC, ..., and at
1800 UTC 14 July 2021) and discarded the remaining ones. In addition, we aggregated the 5-

min QPN time series to obtain hourly accumulations of precipitations.

b. Hydrological models

We analyzed the impact of the hydrological model on the evaluation of QPN by selecting
two contrasting modeling approaches, for which the implementation is described in Table 3.
As a physically-based, distributed model, we used ParFlow with its internal land surface

module CLM (Common Land Model), hereafter ParFlowCLM (Kollet and Maxwell 2006;
11
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238  Kuffour et al. 2020; Maxwell 2013). CLM estimates the actual evapotranspiration,
239 infiltration, and net precipitation (i.e., the part that gives rise to runoff) by resolving the
240  energy budget at the land surface and the water exchange at the interface between the
241  atmosphere, the land, and the soil. ParFlow solves the 3D Richards’ equation for variably
242  saturated subsurface and groundwater flow and the kinematic wave equation for the overland
243  flow routing. These two equations are coupled at the land surface by estimating the boundary
244 fluxes for the kinematic wave model from Richards’ equation, and vice versa. Thanks to this
245  coupling, the model represents a variety of runoff processes (Hortonian vs. Dunne runoff) as
246  well as the re-infiltration and exfiltration processes along the hydraulic pathway. We
247  implemented ParFlowCLM at a resolution of 611 m with 15 vertical layers down to 60 m
248  below the surface (Belleflamme et al. 2023). It was forced with gridded weather inputs over a
249  spin-up period starting from 2007, with only one parameter set for each catchment based on
250 landscape properties, as detailed in Table 3.
251 As a conceptual, lumped model, we chose GR4H (Ficchi et al. 2019). This model

252  estimates net precipitation and actual evapotranspiration using a soil-moisture accounting
253  reservoir. The net precipitation gives rise to runoff through two routing branches. The quick
254  flow branch transfers 10% of net precipitation via a unit hydrograph, while the slow flow
255  branch transfers the remaining 90% via a unit hydrograph and a nonlinear reservoir. Over
256  both branches, an exchange between surface flow and groundwater is enabled. GR4H uses
257  catchment-average weather inputs to simulate the discharge at the catchment outlet. Model
258  parameters were estimated using historical discharge measurements over the period 2007-
259 2021, with a spin-up over the year 2006 to limit the effect of model initialization on

260 calibration. We tested several choices of calibration combining the sub-period of calibration,
261  the cost function, and the weights attributed to discharge measurements to emphasize high
262  values, yielding 12 optimal parameter sets for each catchment (Saadi et al. 2023).

Model Spatial and Parameter estimation Hydroclimatic data

temporal
resolution

12
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ParFlowCLM | ~611 m
horizontal
resolution with
a geometrically
varying vertical
resolution,
hourly

Topography: ASTER? DEMP (Abrams et al.
2020;
https://Ipdaac.usgs.gov/products/astgtmv003)
combined with MERIT® Hydro (YYamazaki et
al. 2019).

Soil and geology: SoilGrids250m (Hengl et
al. 2017), reclassified into 12 USDAY texture
types, and IHME1500° (Duscher et al. 2015)
for the typology below the depth to bedrock;
ROSETTA model (Schaap et al. 2001) to
obtain hydraulic parameters (hydraulic
conductivity, residual and saturated water
content, and van Genuchten parameters)
depending on soil types.

Land cover: CORINEf Land Cover database
of the CLMS? for the year 2018 (Langanke et
al. 2016; https://land.copernicus.eu/pan-
european/corine-land-cover/clc2018, last
access: 12 March 2020), reclassified into 18
IGBP" categories. A uniform Manning’s
coefficient at 0.2 s-m™ (Schalge et al. 2019)
was used for the whole domain.

Only one parameter set for each catchment
(Belleflamme et al. 2023).

Precipitation: RADOLAN' of the
DWD' (Winterrath et al. 2018),
which is a Germany-wide, radar-
based near-real time precipitation
product available at 1-km
resolution and hourly time steps
obtained using relationships
between horizontal reflectivity
and precipitation rates, and then
adjusted to rain gauges (i.e.,
RADOLAN-RW,
https://opendata.dwd.de/, last
access 14 April 2023). RAVKDP
was used for precipitation on 14
July 2021 (Chen et al. 2021).

2-m air temperature, surface
pressure, downward solar and
thermal radiation, specific
humidity, and eastward and
northward components of the 10-
m wind: ERA5-Land dataset
(Mufioz-Sabater et al. 2021),
available at 9-km resolution.
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GR4H

Lumped, hourly

Four catchment-scale parameters representing
the maximum retention capacity of the soil,
the exchange between surface water and
groundwater, the surface flow dynamics and
the baseflow dynamics. These parameters are
calibrated on historical discharge
measurements using a gradient-descent based
algorithm (Coron et al. 2017; Edijatno et al.
1999).

12 optimal sets of 4 parameters for each
catchment (Saadi et al. 2023).

Catchment-averaged
precipitation: RADOLAN! of the
DWD' (Winterrath et al. 2018),
available at 1-km and hourly
resolutions, estimated based on
horizontal reflectivity and
adjusted to rain gauges (i.e.,
RADOLAN-RW,
https://opendata.dwd.de/, last
access 14 April 2023). RAVKDP
was used for precipitation on 14
July 2021 (Chen et al. 2021).
Thiessen polygons were used to
estimate the catchment-average
precipitation at each hour.

Catchment-averaged potential
evapotranspiration: obtained
from catchment-average, 2-m air
temperature using a temperature-
based formula (Oudin et al.
2005).

Discharge: used for model
calibration, available at daily
resolution
(https://www.elwasweb.nrw.de;
https://wasserportal.rlp-
umwelt.de, last access: 20
September 2021).

2Advanced Spaceborne Thermal Emission and Reflection Radiometer; "Digital elevation model; °Multi-Error-
Removed Improved Terrain; “United States Department of Agriculture; ¢International Hydrogeological Map of
Europe at the scale of 1:1500000; ‘Coordination of Information on the Environment; Copernicus Land Monitoring
Service; "International Geosphere-Biosphere Programme; '‘Radar-Online-Aneichung; 'Deutscher Wetterdienst
(German Weather Service)

263
264

265

266
267
268
269
270

Table 3. Details of ParFlowCLM and GR4H implementation: resolution, parameter
estimation, and sources of hydroclimatic data needed for each model.

c. Comparison and evaluation framework of QPN

Following Berenguer et al. (2005), we evaluated the skill of QPN on two levels. On the
first level, we analyzed how QPN succeeded in matching QPE for each lead time, first at the
grid-cell scale, then at the catchment scale by averaging the precipitation fields using the
catchment polygon. At the grid-cell scale, we adopted the mean absolute error MAE (mm/h)

and the root-mean-square error RMSE (mm/h) as evaluation metrics, expressed as:
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where N is the number of initialization time steps (i.e., hours or 5-min time steps between
0100 UTC 14 July 2021 and 1800 UTC 14 July 2021), N, is the number of grid cells, L is the
lead time, P,y (i) is the QPN intensity for the time step t + L issued at time step t for the

grid cell i, and P,y (i) is the QPE intensity at time step t + L for the grid cell i. Both RMSE
(mm/h) and MAE (mm/h) vary between 0 (perfect match) and +oo. Note that for the
computation of the spatial average of MAE and RMSE, we excluded the grid cells for which
the total precipitation amount on 14 July 2021 (according to RAVKDP) was equal to zero. By
this choice, we aimed at limiting the number of grid cells for which the errors are equal or
very close to zero, the inclusion of which would artificially decrease the two accuracy
measures. At the catchment scale, we first averaged the precipitation time series using the
catchment polygon, then we computed the MAE between the resulting catchment-scale QPE

time series and catchment-scale QPN time series.

For the probabilistic STEPS method, since each member served as input to the
hydrological models, both MAE and RMSE scores were estimated for each of the 20
members, then for a deterministic nowcast STEPS-m taken as the ensemble mean at each grid
cell and at each time step. Following the approach by Foresti et al. (2016), we also aimed at
analyzing the spread of the ensemble with respect to the errors of the deterministic forecast
(i.e., S-PROG or STEPS-m) in order to qualify whether the ensemble was under-dispersive
(i.e., underestimating the uncertainty in the evolution of the precipitation field) or over-
dispersive (i.e., overestimating the uncertainty in the evolution of the precipitation field; see
Foresti et al. 2016). To this aim, we estimated the spread of the ensemble at the grid-cell scale

at each lead time using the following equation (Foresti et al. 2015):
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where M = 20 is the total number of members, P, (i, m) is the QPN intensity for the time

step t + L issued at time step t for the grid cell i by the STEPS member m, and ﬁ(i) is the
intensity of the STEPS ensemble mean nowcast at time step t + L issued at time step t for the
grid cell i. Ideally, the spread should be of the same order of variability of the QPE around
the ensemble mean, measured in our case by the RMSE of the ensemble mean nowcast
STEPS-m. When the spread is higher than this RMSE, the ensemble is over-dispersive,

otherwise the ensemble is under-dispersive (Foresti et al. 2016).

On the second level, QPN were used to extend the precipitation input to the hydrological
models. First, both models were run prior to 0100 UTC 14 July 2021 with the version of
RADOLAN that was adjusted to rain gauges (i.e., RADOLAN-RW:; Winterrath et al. 2018)
as input precipitation (see Table 3). These runs started from January 2021 for ParFlowCLM
and from 2007 for GR4H. Starting from 0100 UTC 14 July 2021, the QPE product RAVKDP
was used instead of RADOLAN for our study region. At each initialization hour (e.g., 0100
UTC 14 July 2021), the QPE was replaced by the 3-h QPN (e.g., at 0200 UTC, 0300 UTC
and 0400 UTC) followed by zero precipitation (e.g., from 0500 UTC onward). Then, the
resulting forecasted hydrographs were compared to the simulated hydrograph with the QPE
product RAVKDRP as input for 14 July 2021 and RADOLAN as input for the remaining days
(i.e., the hindcasted hydrograph).

In a first step, we evaluated the quality of the hydrological forecasts obtained by the use of
QPN and the benchmarks using the Nash-Sutcliffe Efficiency score (NSE, Nash and Sutcliffe
1970), computed as:

Tt (Qear — Qeary)?
Yot (Qesr — Qr)?

NSE(L)=1- )

where Q¢ is the forecasted discharge values at the time step t + L initialized at the time
step t, Q.1 the hindcasted discharge values (i.e., simulated hydrographs using QPE) at time
step t + L and Q.,, their average. NSE varies between —oo and 1, the latter being the ideal

value. As the lead time increases, NSE is expected to decrease. Fig. 8 of Berenguer et al.
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(2005) and Fig. 2 of Heuvelink et al. (2020) illustrate the application of this evaluation

method.

The added value of each QPN can be estimated by comparison with a
benchmark/reference option (Pappenberger et al. 2015b). To measure this added value, we

computed the gain in lead time defined as (Berenguer et al. 2005):
Gain inlead time = LqpN(NSEy,) — Lref(NSE) (5)

where Lopn (NSEg,) is the lead time at which the obtained NSE with the QPN as input to the
hydrological model equals NSE,;, for the first time, and Lg.s(NSE,) is the lead time at which
the obtained NSE with the benchmark Ref equals NSE, for the first time. Following
Heuvelink et al. (2020), we adopted a threshold of NSE;, = 0.9. To analyze the impact of
this threshold, we computed the gain for an additional threshold of NSE;, = 0.5.

In a second step, we applied the average of the Continuous Ranked Probability Score
CRPS (Hersbach 2000), expressed for each lead time L as:

Ne Lo
CRPS (L) = N%E fo (FQ;;;It(X) — 1{Qu < X})de (6)
t=1

where FQ;at is the cumulative distribution function of the forecasted discharge values Q..

initialized at the time step t for the time step t + L, and Q.,, is the value at time step t + L of
the simulated hydrograph using QPE (i.e., the hindcasted hydrograph). 1{y < x} is the
Heaviside step function that equals 1 if y < x and 0 otherwise. CRPS was chosen because it
helps undistinguishably evaluate both the probabilistic and the deterministic nowcasting

methods. For a deterministic forecast, it is equivalent to MAE.

To evaluate the added value of the QPN methods with respect to a benchmark, a skill

score based on the CRPS was computed as follows (Chen et al. 2017):

- B CRPS(Ref)
1 CRPS,Ref — CRPS(QPN) +CRPS(Ref) (7)

which is a bounded (between 0 and 1) and a scale-independent metric. A skill higher than 0.5
indicates that the forecasts obtained with QPN are better than the ones obtained with the
benchmark (i.e., CRPS(QPN) < CRPS(Ref)), and vice versa.

To investigate the effect of the benchmark choice on the evaluation of QPN, we evaluated

the skill of QPN with respect to: (1) a hydrological persistence model (Berthet et al. 2009)
17
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that forecasts the future discharge to be constant and equal to the hindcasted discharge at the
hour of initialization (Skillcres, ), and (2) a forecasted hydrograph using zero precipitation
nowcasts (ZNC; Heuvelink et al. 2020; Berenguer et al. 2005) as QPN (Skillcrps, znc). The
latter is costlier than the former because it involves running the hydrological model for the
ZNC. Finally, for the CRPS-based skill in Eq. 7, we retrieved the lead time up to which QPN
is considered to be “useful” with respect to the benchmark using two skill thresholds: the

theoretical one at 0.5, and a more demanding one (2/3 = 0.67, which is equivalent

to CRPS(QPN) < % CRPS(Ref)).

To qualitatively analyze the effect of catchment properties on the added value of QPN
with respect to the benchmark, the gains in lead time based on NSE (Eg. 4) and based on the
skills (Eq. 7) were ranked first with respect to catchment area, and second with respect to the
Gravelius index of the catchment, defined as (Bendjoudi and Hubert 2002):

P
K= v ®)

where P is the perimeter of the catchment polygon (in km) and A the catchment area (in km?).
Catchments with lower K tend to have compact or circular shapes, which would generally
result in flashier hydrological responses for a given precipitation event covering the whole
catchment.

4. Results

a. Evaluation of QPN with respect to QPE

Aggregating the QPN time series to the hourly time step reduced the differences between
the three methods and modified their ranking, as can be seen in Fig. 3. At 5-min resolution
(Figs. 3a and 3b), QPN obtained by advection and STEPS had similar MAE and RMSE
scores over the domain along the lead times. As the lead time increased, S-PROG clearly
outperformed the other two QPN methods. At 1-h resolution (Figs. 3c and 3d), the three
methods obtained lower MAE and RMSE values compared with the 5-min resolution, S-
PROG preserved its ranking with respect to advection and STEPS, whereas advection slightly
outperformed the STEPS ensemble, suggesting that changing the accumulation window can
modify the ranking of the QPN methods. For both time resolutions, the STEPS ensemble
mean STEPS-m outperformed all the other members for all time steps, suggesting that the

stochastic perturbations of the S-PROG method (materialized by STEPS members) got
18
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penalized for this event. Finally, there were very small differences between the different
STEPS members in terms of MAE and RMSE (hardly visible in Fig. 3), which is somewhat
expected from averaging the errors in space (over the domain) and time (across the
initialization time steps) for members generated randomly and independently for each
initialization. The small spread of STEPS members compared with the RMSE of the
ensemble mean STEPS-m or the RMSE of the deterministic S-PROG method suggests that
the ensemble nowcasts were under-dispersive (Foresti et al. 2016), i.e. that they
underestimated the uncertainty in the nowcasted precipitation field for this event.

(@) 1.0 (b)=3.5
£3.0
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% 5—2.5
£ 0.61 S 2.0
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QPN method —; Advection — S-PROG — STEPS — STEPS-m — spread

Fig. 3. Evolution of the spatial average of mean absolute errors (MAE) and root-mean-
square errors (RMSE) of QPN with respect to precipitation rates from the QPE product
RAVKDP for different lead times at 5-min resolution updated each 5 min for (a) and (b), and
at 1-h resolution updated each hour for (c) and (d). In (b) and (d), “spread” indicates the
spread of the STEPS ensemble (Eq. 3). STEPS-m indicates the ensemble mean, i.e., the
nowcast made by taking the average of the nowcasted depths from the 20 STEPS members at
each grid cell and each time step. The spatial average was computed on all domain grid cells
except the ones with zero-precipitation amounts on 14 July 2021 according to the QPE
product RAVKDP. The ensemble of MAE and RMSE errors for the STEPS method is hardly
visible due to very small differences between the members.

At the hourly time step, the three QPN methods showed comparable performances in

reproducing the observed precipitation at the grid-cell-scale, with a slightly higher
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performance for S-PROG, as shown in Fig. 4. The spatial pattern of MAE followed that of
the precipitation sums for the event (Fig. 2b), with a slight shift for the part of the event cell
located over the catchment set to the south-west. Unsurprisingly, the errors were minimal for
the shortest lead time (i.e., 1 h) and increased with increasing lead time. For the 1-h lead time,
domain-average MAE values were around 0.36-0.37 mm/h for the advection and S-PROG
methods, whereas they reached 0.39 mm/h on average for STEPS members, indicating a
slightly deteriorated accuracy for the probabilistic QPN. For the 3-h lead time, these errors
more than doubled and reached 0.77 mm/h for advection, 0.7 mm/h for S-PROG, and 0.79
mm/h on average for STEPS, indicating a better performance of the S-PROG method over

the domain.
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Fig. 4. Mean absolute errors (MAE) of QPN obtained using advection (left column), S-
PROG (middle column) and STEPS for the 1-h lead time (top row), 2-h lead time (middle
row) and 3-h lead time. MAE values were computed with respect to observed precipitation
rates from RAVKDP. For STEPS, the median errors over the 20 members is shown.

At the catchment scale, the advection method obtained slightly better results than S-PROG

and STEPS, as shown in Fig. 5. The change in the ranking of the QPN methods with respect

to Fig. 3 may be explained by the catchment-scale aggregation of the precipitation fields prior

to the computation of the errors, or the fact that the catchments do not cover the whole
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domain on which MAE values of Fig. 3 were computed (see Fig. 2b and Fig. 4). Moreover,
advection does not change QPE intensities across the lead times, whereas S-PROG filters the
observed QPE field, leading to smoother QPN field and to an underestimation of precipitation
for persistent and heavy events. This results in advection mimicking better the QPE than S-
PROG, especially over our catchment set where the July 2021 event was persistent and
heavy. Overall, QPN had better success in reproducing the average precipitation for the
catchments drained by the Rur at Monschau and the Erft than for the catchments drained by
the Kyll and the Ahr. The variability in the ensemble errors of STEPS increased with
increasing lead time. In addition, the errors of the STEPS method bracketed those of the two
deterministic methods except for some cases where the advection showed a lower error than
the whole STEPS ensemble. The evolution of the errors does not indicate a dependency on
catchment size, although the largest catchment (Erft at Neubrueck) showed lower MAE
errors for a lead time of 3 h. The variability of errors across the catchments reflects the effect

of their location with respect to the precipitation field.
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Fig. 5. Mean absolute errors between observed precipitation (QPE) and QPN estimated
using advection, S-PROG, and STEPS at the scale of each catchment. LT refers to lead time.

b. Added hydrological value of QPN

To investigate the added value of the tested QPN methods from a hydrological point of
view, we first show in subsection 4.b.1 the hindcasted hydrographs using RADOLAN and the
QPE product RAVKDP for the 14 July 2021 event (Fig. 6) based on which the quality of the
forecasted hydrographs is estimated using NSE (Fig. 7). Second, in subsection 4.b.2, we
show the skill of the QPN methods computed using the CRPS between the corresponding
forecasted hydrographs and the hindcasted hydrograph using QPE, with respect to the
benchmarks of the hydrological persistence or the zero-precipitation nowcasts (Figs. 8 and 9).
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Finally, in subsection 4.b.3, we show the gains in lead time obtained using either the
efficiency-based approach (with NSE) or the skill-based approach (with CRPS) and
depending on the benchmark (hydrological persistence or zero-precipitation nowcasts; Fig.
10).

1) HINDCASTED HYDROGRAPHS AND QUALITY OF THE FORECASTED HYDROGRAPHS

To illustrate the dynamics of the catchment responses to the extreme rainfall event of 14
July 2021, simulated hydrographs using RADOLAN (prior to 14 July 2021) and the QPE
product RAVKDP (for 14 July 2021) by GR4H and ParFlowCLM are presented in Fig. 6.
They indicate that the highest recorded peak flow prior to July 2021 (in orange dashed lines)
was surpassed by model simulations at least once in all the catchments except the Rur at
Monschau. However, where available, the last measured peak flow before the unavailability
of records was surpassed by model simulations only for the catchments drained by the Ahr
river. Qualitatively, GR4H and ParFlowCLM agreed for the catchments drained by the Ahr
and the Kyll, whereas they significantly disagreed over the Erft and the Rur. Finally, the
spread in the GR4H simulations reflects the large uncertainty in simulated hydrographs due
to parameter uncertainty (Saadi et al. 2023).
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Fig. 6. Simulated hydrographs for the July 2021 events using 12 parameter sets with
GR4H (shaded area in green) and one parameter set with ParFlowCLM (in black). Orange
dashed lines indicate the highest recorded peak flow (Q~istreax) prior to July 2021. Subject to
availability, red dashed horizontal lines indicate the reported last measured peak flows before
the failure of the monitoring devices (Qvastmes), and red dashed vertical lines their timings.
Hydrographs are simulated using the QPE product RAVKDP on 14 July 2021 and
RADOLAN for the remaining time steps. For GR4H, the shaded area is delimited by the min-
max of the simulations at each time step using 12 parameter sets for each catchment.

From the hydrological viewpoint, the three QPN methods yielded very similar
hydrological forecasts across the seven catchments, as suggested by their NSE scores in Fig.
7. At the threshold of NSEw = 0.9, the three methods yielded satisfactory hydrological
forecasts for lead times ranging from 1 up to 5 h (GR4H for the Erft at Neubrueck,
ParFlowCLM for the Rur at Monschau). The benchmark of the hydrological persistence (Q)
obtained the fastest decreasing NSE curves, which is expected given its limits for a highly
variable catchment response during the event. However, the benchmark of the zero-
precipitation nowcasts (ZNC) succeeded in yielding better hydrological forecasts using

ParFlowCLM for the catchments drained by the Kyll. For these two catchments, the use of
25
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the QPN products led to early increases of the forecasted hydrographs with respect to the

hindcasted hydrograph, resulting in deteriorated NSE values compared with the ZNC

benchmark in the early lead times. Finally, the QPN methods led to more satisfactory

hydrological forecasts when using GR4H than when using ParFlowCLM, except for the Rur

at Monschau.
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Fig. 7. Evolution of the Nash-Sutcliffe Efficiency (NSE) of the forecasted hydrographs
using the QPN methods and the benchmarks (hydrological persistence Q, zero-precipitation
nowcasts ZNC) with respect to lead time. Red dashed lines indicate the NSE threshold NSEn
=0.9. For GR4H, the curves represent the median score from the 12 simulations. For STEPS,
the curves represent the median score from the 20 members.
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2) SKILL OF THE QPN METHODS

The three QPN methods were also similar in terms of their skill with respect to the
benchmark of hydrological persistence, as can be seen in Fig. 8. The skill indicates that using
QPN vyielded better forecasts than the persistence model for lead times higher than 30 h,
except for the Rur at Monschau where the skill dropped after only 16 h. Note that this should
be interpreted in the light of the quality of the forecasted hydrographs by both the QPN
methods and the benchmark of the hydrological persistence, which in all cases had negative
NSE values after a lead time of 12 h (see Fig. 7). The evolution of the skill was somewhat
distinct for each catchment, but similar for the catchments drained by the same river, which
indicates a dependency on location with respect to the precipitation event. The rebound in the
skill curve for the catchments drained by the Ahr river may reflect the change in the
forecasted part of the hydrograph from the rising to the falling limb. Finally, both models
showed similar evaluation of the three QPN methods, with GR4H showing slightly higher

skill scores than ParFlowCLM at the very short lead times.
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hydrological persistence benchmark (Skillcers, o) over the seven catchments. Dashed red
lines indicate a skill of 0.5, i.e. using QPN is as good as the hydrological persistence model.
For GR4H, the curves represent the median score from the 12 simulations.

Changing the benchmark to zero-precipitation nowcasts (ZNC) had a limited impact on

the skill of the tested QPN, as suggested by Fig. 9. Namely, the skill slightly decreased

compared with the hydrological persistence in Fig. 8, indicating that the ZNC is a more

challenging benchmark to beat than the hydrological persistence. This is somewhat expected

given the better performances of ZNC compared with hydrological persistence, as can be

seen in Fig. 7. This is not however the case for all catchments. The Rur at Monschau

indicates that the ZNC benchmark is easier to outperform than the hydrological persistence.
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The rebound effect observed in Fig. 8 for the Ahr catchments disappeared with the ZNC
benchmark, as all QPN tend to be equal to ZNC after the end of the event.
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Fig. 9. Evolution of the skill of the forecasted hydrographs using QPN with respect to
forecasted hydrographs with zero-precipitation nowcasts (ZNC). Red dashed lines indicate a
skill of 0.5, i.e. using QPN is as good as feeding the models with ZNC. For GR4H, the curves
represent the median score from the 12 simulations.

3) GAINS IN LEAD TIME WITH RESPECT TO THE BENCHMARKS

The gain in lead time reflects the dependency on the evaluation method, the benchmark
and the chosen threshold for NSE or for the skill, as shown in Fig. 10. Based on NSE and for
a threshold at NSE = 0.9 (Figs. 10a and 10b), gains in lead time ranged between 1 hand 5 h
with GR4H (on average) and between 0 h and 5 h with ParFlowCLM with respect to the
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hydrological persistence. With respect to ZNC, gains ranged between 0 h and 4 h with GR4H

(on average) and in some cases there were losses with ParFlowCLM, specifically in the

catchments drained by the Kyll and the Ahr at Muesch. Changing the threshold from NSE =

0.9 to NSEw = 0.5 led to increases in the gains only with respect to the hydrological

persistence (Figs. 10c and 10d). In this case, the gains ranged between 2 h and 8 h with
GR4H and between 0 h and 7 h with ParFlowCLM. With respect to ZNC, changing the NSE
threshold from 0.9 to 0.5 resulted in poorer gains, especially for ParFlowCLM (range: -3 h to

4 h). This is caused by faster decreases in the quality of the forecasted hydrographs with the
QPN methods compared with those forecasted with ZNC (Fig. 7)

(a) NSE > 0.9 | Benchmark: Q (Hydro. persistence) (b) NSE > 0.9 | Benchmark: ZNC
GR4H ParFlowCLM GR4H ParFlowCLM
g° Y . B 5o
g 6 g2 A
5 o n £°B a3 o)
B a4 ) B 80 oo
@ rh E B on o fa E
E 2/ - E E E &) E 2
3 A n A =
O o A 04
AR na {,%%o;w S AAn ool T ‘“o:-o Lo, ‘%%:
Yo, %, g s, Sy S .y o, % “,, o, S %, % a aé S %, O, O, .s;, S8, 2, s
&, ?’%4 %, € %, @o) & ’?,% %, o Ny, %, %'9(, s o, o, °6 e@ % 0490 2 (,E ., % %, %, 04‘9:,
(c) NSE > 0.5 | Benchmark: Q (Hydro. persistence) (d) NSE > 0.5 | Benchmark: ZNC
GR4H ParFlowCLM GR4H ParFlowCLM
= & 1 £
= £
< g b @ < al o0 a_ A
Ee Al B2 E ) A il o
s'nn o oo s o 0
1.788p o - Rl K g 5
£ 2- A - £ 2 ﬁ [ ]
k= c
£ m A £ ﬁ
90 A O 4
%, %, 5y S, hy, 8 R, %, b, sé Y, o, «\\,5 %, O;, aé ey o @,, % wé g, o @,; 4
Y 4,@[\4 o% % s,. s,,}) (‘6% 4 0004 % e@ @//_') e,’% Y %04 s, 5 "6, % v" v 'z, ’>) 2 @6 s,’-)) ('6‘9
(e) Skillgrps, o > 0.5 f Skillgges, znc > 0. 5
GR4H ParFlowCLM GR4H ParFlowCLM
48- L3 oono 00000 i #0000 000 o o000
| ] |
~40- | =40 ‘
= =
S 32- B B - }
£ P |
= | B |
T & R |
— < [ |
8- | 8 |
ol el 2 E | .
4;:'3% %00 :/A, 6"”«’ ‘:'b ;ZO» /A;ﬁo *,4,;&4, a«),‘:w,;zf» P ‘:’a o 4»4 :»G/&«',; 425//43,‘:'& 3%»4,,:4»@:%%}
B, % oy, %, %, %,
& *4,@6"' ey "s,, %0’;} 66 % Q, » Sy ”-94“ 6@% “'qs% %, 7,@ 60 *’ %' 69% s, %, 0@5 8y, %oy %4, Ve, "o,,s
(9) Skillggps, g > 0. GT (h) Skillggps, znc > 0.67
GR4H ParFlowCLM GR4H ParFlowCLM
12- FAN ﬁ ! 8] i
~10- B 1 = A
g 8- & ¢ ﬁ i E s{ e a i 0 g
4K |
B T A, T a nf | i |
T 4- ] e - ‘
3 7AY | 82 1 84 £
3. o8 | - { A 13 8o a
0- | D‘! 1 ZE
4{3 %o J’/Ar »«r, 8, 'Mf /G@/%%o@ﬁw b 7'5 0,’44;& /A@,"?O q"" <9,'>M, 0» 4—?//:&0&%, iy »<9,’M°
%, 6/3, %, “o,ﬁ Q”% KN "o, %7, 60 “o Geé 9‘960 e, %/ fz, "6 “‘o,s s, ‘94@ @, o%’ "%, “‘o,j 994 Y, %
Sy %, v %, 6@ %y "e(, %, K 49(, S K "

QPN method [J Advection

SPROG /. STEPS

Fig. 10. Gain in lead time based on Nash-Sutcliffe score with respect to hydrological
persistence (on the left) and zero-precipitation nowcasts (on the right) as benchmarks with a
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score threshold at 0.9 for (a) and (b), and at 0.5 for (c) and (d). Lead time (in hours) up to
which using QPN was better than the benchmark (hydrological persistence on the left, zero-
precipitation nowcasts on the right) according to a skill threshold at 0.5 for (e) and (f), and at
0.67 for (g) and (h). On the x-axis, catchments are ranked with decreasing Gravelius index
from left to right. Note that the evolution of the skills was computed up to a maximum of 48
h.

Using the skill-based approach, choosing the default threshold (0.5, Figs. 10e and 10f)
yielded much larger gains in lead time compared with a more demanding threshold (0.67,
Figs. 10g and 10h). With a threshold of 0.5 (Figs. 10e and 10f), the improvements were up to
48 h, the maximum range to which we limited our analysis, which should be interpreted in
the light of the poor performances of the benchmarks (Fig. 7). With a threshold of 0.67, the
use of QPN improved the forecast lead time by 4 h up to 9 h with GR4H, and by 1 h up to 12
h with ParFlowCLM (Erft at Neubrueck, the largest catchment) with respect to the
hydrological persistence as benchmark (Fig. 10g). With respect to ZNC (Fig. 10h), the
improvements ranged between 1 h and 7 h with GR4H and between 0 h and 5 h with
ParFlowCLM.

Finally, we found no consistent pattern in the gains in lead time with respect to catchment
area (not show here). However, when the catchments are ranked by their Gravelius index (Eq.
8), the added value of the QPN methods with respect to the hydrological persistence using
ParFlowCLM increased as the Gravelius index decreased (Figs. 10a, 10c and 10g). This
suggests that with ParFlowCLM, using the QPN methods was more beneficial for catchments
with a more compact shape. This dependency on the catchment shape was not detectable with
GRA4H.

5. Discussion

For the major flooding event of July 2021 in our study region, the three tested QPN
products obtained very similar performances in terms of both the reproduction of observed
precipitation and hydrological forecasting. The highly similar performances of the three
methods can be attributed to two factors. First, the aggregation to the hourly time step may
have filtered out the differences between the three methods, which are reported by previous
studies to be in the order of few to tens of minutes (Ayzel et al. 2019; Berenguer et al. 2005;
Heuvelink et al. 2020; Imhoff et al. 2020). Fig. 3 shows however that the methods are already
similar at 5-min resolution, with a slightly better performance for S-PROG. Second, the
persistent nature of the event (see event hyetographs in Fig. 6) might have made it as easy to
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be forecasted by simple nowcasting methods (advection) as by more sophisticated ones (S-
PROG and STEPS). The poor performances of the STEPS ensemble compared with the
ensemble mean STEPS-m suggests that the perturbations of the deterministic forecast got
penalized for this event (Heuvelink et al. 2020). In addition, comparing the spread in the
STEPS ensemble with the deterministic STEPS-m or S-PROG forecasts suggests that the
STEPS ensemble might have underestimated the uncertainty in the evolution of the
precipitation field for this event (Foresti et al. 2016). Nevertheless, the similarity in terms of
performances between STEPS and the deterministic methods should not undermine its
benefits in providing probabilistic nowcasts, which are of greater value for decision makers
than deterministic ones (Fundel et al. 2019; Merz et al. 2020).

Overall, our results show that the QPN methods improved the hydrological forecasts
compared with hydrological persistence or with the zero-precipitation nowcasts. Previous
studies such as Heuvelink et al. (2020), Berenguer et al. (2005), and Vivoni et al. (2006)
reported improvements of 2 to 6 h for catchments of ~10% km? of size. First, some of the
differences may be explained by the hydroclimatic settings of the studied catchments and/or
their characteristic response times (or concentration times). Berenguer et al. (2005) studied
catchments located in the Mediterranean region (north-east of Spain), for which the fast
response may explain the absence of significant improvements using QPN beyond 2 h. On
the contrary, Heuvelink et al. (2020) showed that significant improvements in the
hydrological forecasts can be obtained when using 3-h long QPN for catchments under
humid, temperate climate (Netherlands) and characterized by slower responses than
Mediterranean catchments. In our case, the improvements are in general limited to 4 h with
respect to a benchmark of zero-precipitation nowcasts, with a high variability from one
catchment to another (Figs. 10b and 10d). For some catchments (drained by the Kyll and the
Ahr at Muesch), the QPN methods showed worse performances compared with the zero-
precipitation nowcasts, especially with ParFlowCLM. The variability in the performances of
the QPN from one catchment to another can be either explained by the location of each
catchment within the precipitation field, or their properties that modulate the delay between

the precipitation and the catchment response.

Second, some of the differences can be attributed to methodological choices. Using the
same approach as in Heuvelink et al. (2020) and Berenguer et al. (2005) based on the quality
of the forecasted hydrographs measured by NSE, we obtained similar improvements up to 4-5

32
File generated with AMS Word template 2.0



597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

616
617
618
619
620
621
622
623
624
625
626
627
628
629

h with an NSE threshold at 0.9, depending on the benchmark (Figs. 10a and 10b). However,
this NSE-based approach suffers from the arbitrary selection of an efficiency threshold,
which, according to Figs. 10a to 10d, impacted the estimation of the added value of QPN,
especially with respect to the hydrological persistence as benchmark. We attempted to
circumvent this issue by following a skill-based approach, which provides an a-priori
objective threshold (i.e., 0.5, see Eq. 7), but leads to too optimistic results and suggests that
the skill of QPN lasts for much longer lead times (Figs. 8 and 9, except for the Rur at
Monschau in Fig. 8 and the catchments drained by the Kyll in Fig. 9). By adopting a more
demanding threshold such as 0.67, our skill-based approach leads to results that agree with
previous studies (Figs. 10g and 10h; Heuvelink et al. 2020; Berenguer et al. 2005). The
combination of a skill-based approach with an analysis of the quality of forecasted
hydrographs helped objectively estimate the added value of the QPN products and avoid a
distorted evaluation when the benchmark performs poorly. In all cases, the obtained
improvements may look small, but they can still be of high value for emergency management
and the fire services involved in event response (Speight et al. 2021). However, if observed
hydrographs of the event were available and used, they would probably have led to lower
added value of QPN because of additional errors resulting from the disagreement between the
QPE product and corresponding hindcasted hydrographs with the observed precipitation and
observed hydrographs, respectively.

Several studies reported a dependency of improvements on the catchment size and the
event type (convective vs. stratiform; Berenguer et al., 2005; Heuvelink et al., 2020; Imhoff
et al., 2020). We showed that, in addition, there is also a dependency on methodological
choices, namely the chosen benchmark and the applied hydrological model. The dependency
on the benchmark used to estimate the skill was visible (albeit to a limited extent) from
comparing Figs. 8 and 9, which warns that choosing a simple model (such as hydrological
persistence) may lead to overly optimistic interpretations of the improvements (Pappenberger
et al. 2015b). The dependency on catchment size was hardly visible over our catchment set
for the studied event, except for the largest catchment (Erft at Neubrueck, 1668 km?) which
showed a slow decrease in the skill with respect to lead time. The low sensitivity of the skills
to catchment size is perhaps a result of working on a single event, which emphasizes the
impact of the differences of precipitation amounts registered in the study catchments.
Nevertheless, we noticed a dependency on catchment shape when the hydrological
persistence is chosen as benchmark and with ParFlowCLM as a hydrological model (Figs.
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10a, 10c and 10g), but not with GR4H. The fact that GR4H did not mirror the effect of
catchment shape can be explained by the sensitivity of GR4H parameters to the
anthropogenic effects through calibration on historical observations (Saadi et al. 2020), which
are behind the large differences between model simulations for the Erft at Neubrueck and the
Rur at Monschau in Fig. 6. Accounting for the anthropogenic effects by GR4H (even

implicitly) may have buffered the effect of catchment shape on the catchment response.

The dependency of the skill on the catchment response, i.e. the event hydrograph, was
accentuated by the adoption of the hydrological persistence as benchmark. Since the
reference event hydrograph is the one simulated by the hydrological models using the QPE,
the NSE curves in Fig. 7 suggest that the flashier and the higher the hindcasted peak flow, the
higher the benefit of the use of QPN. This can be seen from comparing the hindcasted
hydrographs by GR4H and ParFlowCLM for the Erft at Bliesheim (Fig. 6), where GR4H
hindcasted an earlier peak flow than ParFlowCLM, mirrored by better NSE values for the
three QPN methods when GR4H was applied for this catchment (Fig. 7). Conversely, the
simulated hydrograph by GR4H for the Rur at Monschau was smoother than the one
simulated by ParFlowCLM, which was accompanied by better gains in lead times for QPN
with ParFlowCLM (Fig. 7). The smoother hydrographs led to less gains because the use of
QPN led to earlier rises in the forecasted hydrographs, which penalized their use. These
differences also reflect the errors of QPN with respect to the QPE product, which are
highlighted by the distributed ParFlowCLM for the catchments drained by the Kyll, where

the zero-precipitation nowcasts showed similar or better NSE scores at the early time steps
(Fig. 7).

Nevertheless, the choice of the adopted hydrological model did not much alter the
conclusions regarding the similarity of the tested QPN methods. The agreement between
QPN according to the distributed ParFlowCLM model suggests that the methods agreed also
in the spatial distribution of precipitation for this particular event at least from a hydrological
point of view, in line with the MAE patterns in Fig. 4. Effects of uncertainties in parameter
estimation of the hydrological models were not included here, but they would be relatively
low given the general agreement of the three methods in terms of predicting the observed
QPE. Effects of uncertainties in initial moisture conditions were minimized by the long spin-

up period of both GR4H and ParFlowCLM models prior to the event.
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Focusing only on one event limits our investigation of other factors that could have
impacted the skill of the tested nowcasting methods, such as the type of the event and the
season (Imhoff et al. 2020). The absence of observed discharge values limits the evaluation of
the accuracy of model simulations, but that should not undermine the obtained improvements
by the use of QPN. Quantifying the added value of the tested QPN with respect to a NWP-
based benchmark for this event would give more convincing results from an operational point
of view, given the relative poorness of the adopted benchmarks in our study. Finally, the
relatively heavy cost of model simulations with ParFlowCLM (especially when applied with
the probabilistic STEPS nowcasts) hampers its test with more parameter sets, which could
have an impact on the evaluation of the skill, especially with respect to the hydrological

persistence as a benchmark.

6. Conclusions and future work

We investigated the usefulness of using precipitation nowcasts to improve the skill of two
hydrological models in forecasting the response of seven catchments located in the west of
Germany for the disastrous July 2021 event. We evaluated three precipitation nowcasting
techniques, namely the Lagrangian advection, S-PROG, and the probabilistic method STEPS.
Our evaluation consisted of analyzing their ability in forecasting the observed precipitation at
5-min and hourly time steps, then in improving the ability of two contrasting hydrological
models, GR4H and ParFlowCLM, in reproducing the simulated hydrographs by the
hydrological models using observed precipitation (or hindcasted hydrographs). For the July

2021 events in our study region, our main conclusions are:

1. The three methods improved the forecasting skill of the hydrological models with
respect to two benchmarks, the hydrological persistence and the zero-precipitation
nowecasts. These improvements varied from one catchment to another, and reached
up to 4-5 h according to an NSE at 0.9 and up to 12 h according to the CRPS skill
at a threshold of 0.67 (i.e., the use of QPN halved the forecasting errors of the
benchmarks).

2. The three methods obtained very similar performances in terms of both
precipitation and discharge forecasting. In particular, the deterministic methods
(advection and S-PROG) performed as good as the average/median probabilistic
one (STEPS).
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3. The use of a conceptual, lumped model (GR4H) led to similar conclusions as with
a physically-based, 3D-distributed model (ParFlowCLM). However, the gains in
lead time were on average lower with ParFlowCLM than with GR4H. The
differences between the two models can be attributed to the anthropogenic
influences in the catchments, which are implicitly accounted for by GR4H through

its calibrated parameters on historical observations.

4. The choice of the evaluation method, the benchmark and the skill threshold
impacted the estimation of the added value of the QPN methods.

As future work, more robust conclusions would be obtained by considering a large
sample of events with a variety of seasons and typologies. Increasing the horizon of the input
precipitation to the models with quantitative precipitation forecasts that make use of
(convection-permitting) NWP outputs through blending approaches (Lovat et al. 2022;
Speight et al. 2021; Clark et al. 2016) would shed more light on the ability of the current
hydrometeorological chains in hedging the damages by issuing useful and timely flood
warnings. Quantifying the economic gains from including precipitation nowcasts (Le Bihan
et al. 2017; Pappenberger et al. 2015a) would provide more convincing arguments about their
usefulness. Finally, the added value of the nowcasting techniques presented in this work
motivates to exploit their benefit in generating nationwide and useful short-time forecasts for

better disaster preparedness (Reinoso-Rondinel et al. 2022).
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