001009042 001__ 1009042
001009042 005__ 20240610121214.0
001009042 0247_ $$2doi$$a10.1103/PhysRevResearch.5.033054
001009042 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02594
001009042 0247_ $$2WOS$$aWOS:001050236900004
001009042 037__ $$aFZJ-2023-02594
001009042 082__ $$a530
001009042 1001_ $$0P:(DE-Juel1)186024$$aIyer, Priyanka$$b0$$eCorresponding author
001009042 245__ $$aDynamics and phase separation of active Brownian particles on curved surfaces and in porous media
001009042 260__ $$aCollege Park, MD$$bAPS$$c2023
001009042 3367_ $$2DRIVER$$aarticle
001009042 3367_ $$2DataCite$$aOutput Types/Journal article
001009042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692258408_31794
001009042 3367_ $$2BibTeX$$aARTICLE
001009042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009042 3367_ $$00$$2EndNote$$aJournal Article
001009042 520__ $$aThe effect of curvature on an ensemble of repulsive active Brownian particles (ABPs) moving on a spherical surface is studied. Surface curvature strongly affects the dynamics of ABPs, as it introduces a new time scale τ=R/v0, with curvature radius R and propulsion velocity v0, in addition to the rotational diffusion time τr. The time scale τ is related to a stop-and-go motion caused by the recurrent alignment of the propulsion direction with the surface normal. This implies that motility-induced phase separation (MIPS) disappears for small R. Furthermore, it causes a narrowing of the MIPS regime in the phase diagram of P{'e}clet number Pe and particle area fraction ϕ. Also, the phase-separation boundary at low ϕ attains a turning point at small R, allowing for the possibility of a reentrant behavior. For a system of two pores with unequal radii connected by a small passage, the density in each pore is found to be inversely proportional to local particle mobility. Notably, this relation breaks down when MIPS occurs in either sphere or when the noise is high. ABPs move against the density gradient owing to their spatially varying velocity. The magnitude of the directional flux from one pore to the other is proportional to the particles effective diffusion constant in the pore. Moreover, fluctuations in the number of ABPs within the pores near the MIPS transition are found to induce transient MIPS states.
001009042 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001009042 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009042 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b1
001009042 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b2
001009042 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3
001009042 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.5.033054$$gVol. 5, no. 3, p. 033054$$n3$$p033054$$tPhysical review research$$v5$$x2643-1564$$y2023
001009042 8564_ $$uhttps://juser.fz-juelich.de/record/1009042/files/Invoice_INV_23_JUL_011373.pdf
001009042 8564_ $$uhttps://juser.fz-juelich.de/record/1009042/files/PhysRevResearch.5.033054.pdf$$yOpenAccess
001009042 8767_ $$8INV/23/JUL/011373$$92023-07-11$$a1200194774$$d2023-07-14$$eAPC$$jZahlung erfolgt$$zUSD 2625,-
001009042 909CO $$ooai:juser.fz-juelich.de:1009042$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001009042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186024$$aForschungszentrum Jülich$$b0$$kFZJ
001009042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b1$$kFZJ
001009042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b2$$kFZJ
001009042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b3$$kFZJ
001009042 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001009042 9141_ $$y2023
001009042 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009042 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009042 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009042 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009042 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009042 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
001009042 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
001009042 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
001009042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009042 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
001009042 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
001009042 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001009042 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001009042 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
001009042 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1
001009042 9801_ $$aAPC
001009042 9801_ $$aFullTexts
001009042 980__ $$ajournal
001009042 980__ $$aVDB
001009042 980__ $$aUNRESTRICTED
001009042 980__ $$aI:(DE-Juel1)IBI-5-20200312
001009042 980__ $$aAPC
001009042 980__ $$aI:(DE-Juel1)IAS-2-20090406
001009042 981__ $$aI:(DE-Juel1)IAS-2-20090406