001009043 001__ 1009043
001009043 005__ 20250701125911.0
001009043 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02595
001009043 037__ $$aFZJ-2023-02595
001009043 041__ $$aEnglish
001009043 1001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b0$$eCorresponding author$$ufzj
001009043 1112_ $$aXVIIIth Conference of the European Ceramic Society$$cLyon$$d2023-07-02 - 2023-07-06$$gXVIII ECerS$$wFrance
001009043 245__ $$aDevelopment of a solar-thermal driven membrane reactor for green hydrogen generation
001009043 260__ $$c2023
001009043 3367_ $$033$$2EndNote$$aConference Paper
001009043 3367_ $$2BibTeX$$aINPROCEEDINGS
001009043 3367_ $$2DRIVER$$aconferenceObject
001009043 3367_ $$2ORCID$$aCONFERENCE_POSTER
001009043 3367_ $$2DataCite$$aOutput Types/Conference Poster
001009043 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1689336443_25164$$xAfter Call
001009043 520__ $$aThe production of green hydrogen for a sustainable and climate-neutral society can be realized via different synthesis paths. Focus of this work is the experimental realization of thermal decomposition of steam in a ceramic membrane reactor. The required heat is provided by solar thermal energy and the oxygen produced is removed in-situ through the oxygen permeable membrane. Key elements for the construction of the proof-of-concept module are the oxygen transport membrane material development and component processing including the necessary joining technology. Fe-doped SrTiO3 is selected as membrane material. The goal is to develop a membrane reactor with membrane structures consisting of a thin dense membrane layer, a porous support layer, and catalytically active surface layers that meet all requirements regarding thermo-chemical stability and permeation flux. Based on the membrane properties and the operating conditions, the materials for housing and sealing, respectively, are selected. The reactor itself needs to be designed to provide optimal gas supply to the membranes. The proof of concept module design is based on a modified stack of solid oxide cells. The metallic components are selected to ensure chemical compatibility and thermal expansion behavior with the ceramic membrane. The gas tight metal – ceramic joining renders high demands on wetting, reactivity and expansion behavior and do not allow pure glass ceramic or Ag-based reactive solders. Instead, composite solders are used for joining membrane and reactor. For this purpose, the chemical und thermomechanical compatibility of the ceramic membrane to the solder and metal housing, respectively, are investigated. For this purpose, the interaction between membrane material and glass solder is studied by sessile drop test. The individual components of the reactor are characterized using dilatometry. The bonding of the ceramic to the metallic housing will be tested and characterized.
001009043 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001009043 7001_ $$0P:(DE-Juel1)173865$$aZeng, Fanlin$$b1$$ufzj
001009043 7001_ $$0P:(DE-Juel1)191155$$aBittner, Kai$$b2$$ufzj
001009043 7001_ $$0P:(DE-Juel1)184692$$aBüddefeld, Bernd$$b3
001009043 7001_ $$0P:(DE-HGF)0$$aXinfang, Li$$b4
001009043 7001_ $$0P:(DE-Juel1)133697$$aKoppitz, Thomas$$b5$$ufzj
001009043 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b6$$ufzj
001009043 7001_ $$0P:(DE-Juel1)133667$$aGross-Barsnick, Sonja-Michaela$$b7$$ufzj
001009043 7001_ $$0P:(DE-Juel1)157695$$aMargaritis, Nikolaos$$b8$$ufzj
001009043 7001_ $$0P:(DE-HGF)0$$aNeumann, Nicole$$b9
001009043 7001_ $$0P:(DE-Juel1)129587$$aBaumann, Stefan$$b10$$ufzj
001009043 8564_ $$uhttps://juser.fz-juelich.de/record/1009043/files/poster.pdf$$yOpenAccess
001009043 909CO $$ooai:juser.fz-juelich.de:1009043$$pdriver$$pVDB$$popen_access$$popenaire
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b0$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173865$$aForschungszentrum Jülich$$b1$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191155$$aForschungszentrum Jülich$$b2$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133697$$aForschungszentrum Jülich$$b5$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b6$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b7$$kFZJ
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157695$$aForschungszentrum Jülich$$b8$$kFZJ
001009043 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DLR$$b9
001009043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b10$$kFZJ
001009043 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001009043 9141_ $$y2023
001009043 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009043 920__ $$lyes
001009043 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x0
001009043 9801_ $$aFullTexts
001009043 980__ $$aposter
001009043 980__ $$aVDB
001009043 980__ $$aUNRESTRICTED
001009043 980__ $$aI:(DE-Juel1)ZEA-1-20090406
001009043 981__ $$aI:(DE-Juel1)ITE-20250108