001     1009058
005     20230929112538.0
024 7 _ |a 10.7554/eLife.81916
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02606
|2 datacite_doi
024 7 _ |a 37083521
|2 pmid
024 7 _ |a WOS:001009734700001
|2 WOS
037 _ _ |a FZJ-2023-02606
082 _ _ |a 600
100 1 _ |a Sherratt, Katharine
|0 0000-0003-2049-3423
|b 0
|e Corresponding author
245 _ _ |a Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
260 _ _ |a Cambridge
|c 2023
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689667582_4435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background:Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.Methods:We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.Results:Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.Conclusions:Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gruson, Hugo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grah, Rok
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Johnson, Helen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Niehus, Rene
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Prasse, Bastian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sandmann, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Deuschel, Jannik
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wolffram, Daniel
|0 0000-0003-0318-3669
|b 8
700 1 _ |a Abbott, Sam
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ullrich, Alexander
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gibson, Graham
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Ray, Evan L
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Reich, Nicholas G
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sheldon, Daniel
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Wang, Yijin
|0 0000-0003-4438-6366
|b 15
700 1 _ |a Wattanachit, Nutcha
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Wang, Lijing
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Trnka, Jan
|0 0000-0002-1786-7562
|b 18
700 1 _ |a Obozinski, Guillaume
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Sun, Tao
|0 0000-0001-6357-6726
|b 20
700 1 _ |a Thanou, Dorina
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Pottier, Loic
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Krymova, Ekaterina
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Meinke, Jan H
|0 P:(DE-Juel1)132189
|b 24
700 1 _ |a Barbarossa, Maria Vittoria
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Leithauser, Neele
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Mohring, Jan
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Schneider, Johanna
|0 0000-0002-9330-2838
|b 28
700 1 _ |a Wlazlo, Jaroslaw
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Fuhrmann, Jan
|0 P:(DE-Juel1)184603
|b 30
700 1 _ |a Lange, Berit
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Rodiah, Isti
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Baccam, Prasith
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Gurung, Heidi
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Stage, Steven
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Suchoski, Bradley
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Budzinski, Jozef
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Walraven, Robert
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Villanueva, Inmaculada
|0 0000-0003-4940-085X
|b 39
700 1 _ |a Tucek, Vit
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Smid, Martin
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Zajicek, Milan
|0 0000-0002-3226-7266
|b 42
700 1 _ |a Perez Alvarez, Cesar
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Reina, Borja
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Bosse, Nikos I
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Meakin, Sophie R
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Castro, Lauren
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Fairchild, Geoffrey
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Michaud, Isaac
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Osthus, Dave
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Alaimo Di Loro, Pierfrancesco
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Maruotti, Antonello
|0 0000-0001-8377-9950
|b 52
700 1 _ |a Eclerova, Veronika
|0 0000-0001-8476-7740
|b 53
700 1 _ |a Kraus, Andrea
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Kraus, David
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Pribylova, Lenka
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Dimitris, Bertsimas
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Li, Michael Lingzhi
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Saksham, Soni
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Dehning, Jonas
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Mohr, Sebastian
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Priesemann, Viola
|0 0000-0001-8905-5873
|b 62
700 1 _ |a Redlarski, Grzegorz
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Bejar, Benjamin
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Ardenghi, Giovanni
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Parolini, Nicola
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Ziarelli, Giovanni
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Bock, Wolfgang
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Heyder, Stefan
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Hotz, Thomas
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Singh, David E
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Guzman-Merino, Miguel
|0 P:(DE-HGF)0
|b 72
700 1 _ |a Aznarte, Jose L
|0 P:(DE-HGF)0
|b 73
700 1 _ |a Morina, David
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Alonso, Sergio
|0 0000-0002-3989-8757
|b 75
700 1 _ |a Alvarez, Enric
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Lopez, Daniel
|0 P:(DE-HGF)0
|b 77
700 1 _ |a Prats, Clara
|0 0000-0002-1398-7559
|b 78
700 1 _ |a Burgard, Jan Pablo
|0 0000-0002-5771-6179
|b 79
700 1 _ |a Rodloff, Arne
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Zimmermann, Tom
|0 P:(DE-HGF)0
|b 81
700 1 _ |a Kuhlmann, Alexander
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Zibert, Janez
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Pennoni, Fulvia
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Divino, Fabio
|0 P:(DE-HGF)0
|b 85
700 1 _ |a Catala, Marti
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Lovison, Gianfranco
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Giudici, Paolo
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Tarantino, Barbara
|0 P:(DE-HGF)0
|b 89
700 1 _ |a Bartolucci, Francesco
|0 P:(DE-HGF)0
|b 90
700 1 _ |a Jona Lasinio, Giovanna
|0 P:(DE-HGF)0
|b 91
700 1 _ |a Mingione, Marco
|0 P:(DE-HGF)0
|b 92
700 1 _ |a Farcomeni, Alessio
|0 0000-0002-7104-5826
|b 93
700 1 _ |a Srivastava, Ajitesh
|0 P:(DE-HGF)0
|b 94
700 1 _ |a Montero-Manso, Pablo
|0 P:(DE-HGF)0
|b 95
700 1 _ |a Adiga, Aniruddha
|0 P:(DE-HGF)0
|b 96
700 1 _ |a Hurt, Benjamin
|0 P:(DE-HGF)0
|b 97
700 1 _ |a Lewis, Bryan
|0 0000-0003-0793-6082
|b 98
700 1 _ |a Marathe, Madhav
|0 P:(DE-HGF)0
|b 99
700 1 _ |a Porebski, Przemyslaw
|0 0000-0001-8012-5791
|b 100
700 1 _ |a Venkatramanan, Srinivasan
|0 P:(DE-HGF)0
|b 101
700 1 _ |a Bartczuk, Rafal P
|0 0000-0002-0433-7327
|b 102
700 1 _ |a Dreger, Filip
|0 P:(DE-HGF)0
|b 103
700 1 _ |a Gambin, Anna
|0 P:(DE-HGF)0
|b 104
700 1 _ |a Gogolewski, Krzysztof
|0 0000-0001-5523-5198
|b 105
700 1 _ |a Gruziel-Slomka, Magdalena
|0 P:(DE-HGF)0
|b 106
700 1 _ |a Krupa, Bartosz
|0 P:(DE-HGF)0
|b 107
700 1 _ |a Moszyński, Antoni
|0 P:(DE-HGF)0
|b 108
700 1 _ |a Niedzielewski, Karol
|0 P:(DE-HGF)0
|b 109
700 1 _ |a Nowosielski, Jedrzej
|0 P:(DE-HGF)0
|b 110
700 1 _ |a Radwan, Maciej
|0 P:(DE-HGF)0
|b 111
700 1 _ |a Rakowski, Franciszek
|0 P:(DE-HGF)0
|b 112
700 1 _ |a Semeniuk, Marcin
|0 P:(DE-HGF)0
|b 113
700 1 _ |a Szczurek, Ewa
|0 P:(DE-HGF)0
|b 114
700 1 _ |a Zielinski, Jakub
|0 0000-0001-8935-8137
|b 115
700 1 _ |a Kisielewski, Jan
|0 P:(DE-HGF)0
|b 116
700 1 _ |a Pabjan, Barbara
|0 P:(DE-HGF)0
|b 117
700 1 _ |a Holger, Kirsten
|0 P:(DE-HGF)0
|b 118
700 1 _ |a Kheifetz, Yuri
|0 P:(DE-HGF)0
|b 119
700 1 _ |a Scholz, Markus
|0 P:(DE-HGF)0
|b 120
700 1 _ |a Przemyslaw, Biecek
|0 P:(DE-HGF)0
|b 121
700 1 _ |a Bodych, Marcin
|0 P:(DE-HGF)0
|b 122
700 1 _ |a Filinski, Maciej
|0 P:(DE-HGF)0
|b 123
700 1 _ |a Idzikowski, Radoslaw
|0 P:(DE-HGF)0
|b 124
700 1 _ |a Krueger, Tyll
|0 P:(DE-HGF)0
|b 125
700 1 _ |a Ozanski, Tomasz
|0 P:(DE-HGF)0
|b 126
700 1 _ |a Bracher, Johannes
|0 P:(DE-HGF)0
|b 127
700 1 _ |a Funk, Sebastian
|0 0000-0002-2842-3406
|b 128
773 _ _ |a 10.7554/eLife.81916
|g Vol. 12, p. e81916
|0 PERI:(DE-600)2687154-3
|p e81916
|t eLife
|v 12
|y 2023
|x 2050-084X
856 4 _ |u https://juser.fz-juelich.de/record/1009058/files/Sherratt%20et%20al.%20-%202023%20-%20Predictive%20performance%20of%20multi-model%20ensemble%20for.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1009058
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)132189
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2023-08-22
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21