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Magnetic resonance imaging (MRI) is used to image root systems grown in opaque soil. However, 
reconstruction of root system architecture (RSA) from 3-dimensional (3D) MRI images is challenging. 
Low resolution and poor contrast-to-noise ratios (CNRs) hinder automated reconstruction. Hence, 
manual reconstruction is still widely used. Here, we evaluate a novel 2-step work flow for automated 
RSA reconstruction. In the first step, a 3D U-Net segments MRI images into root and soil in super-
resolution. In the second step, an automated tracing algorithm reconstructs the root systems from the 
segmented images. We evaluated the merits of both steps for an MRI dataset of 8 lupine root systems, 
by comparing the automated reconstructions to manual reconstructions of unaltered and segmented 
MRI images derived with a novel virtual reality system. We found that the U-Net segmentation offers 
profound benefits in manual reconstruction: reconstruction speed was doubled (+97%) for images with 
low CNR and increased by 27% for images with high CNR. Reconstructed root lengths were increased 
by 20% and 3%, respectively. Therefore, we propose to use U-Net segmentation as a principal image 
preprocessing step in manual work flows. The root length derived by the tracing algorithm was lower than 
in both manual reconstruction methods, but segmentation allowed automated processing of otherwise 
not readily usable MRI images. Nonetheless, model-based functional root traits revealed similar hydraulic 
behavior of automated and manual reconstructions. Future studies will aim to establish a hybrid work flow 
that utilizes automated reconstructions as scaffolds that can be manually corrected.

Introduction

The projected increases in frequency and severity of extreme 
weather events, combined with the expected growth of the 
global population, pose a risk to food security [1,2]. There is 
an urgent need for crop varieties and agricultural management 
practices that allow yield increases with sustainable use of nat-
ural resources, while being resilient to adverse growing condi-
tions such as drought [3,4]. For optimization of plant health 
and yield formation, roots are of utmost importance as they 
determine the sites in soil where roots take up water and sol-
utes. Root system architecture (RSA) is often a highly plastic 
trait that is defined by the soil conditions surrounding the root 
system [5].

Identifying RSA phenotypes that will perform well under 
adverse growing conditions is key to define breeding goals for 
varieties that can meet future challenges. A major constraint 
of identifying suitable RSAs is root phenotyping [6]. Roots can 
be readily observed using nondestructive techniques when 
seedlings are grown in rhizotrons, transparent growth pouches, 

or artificial growth media, but these methods usually result in 
2-dimensional (2D) images that fail to capture 3-dimensional 
(3D) features of the root system. In addition, observations made 
in soil-free experimental setups are not necessarily transferable 
to field conditions, due to lack of root–soil interactions [7]. When 
roots are grown in soil, the opaque nature of the medium is 
a challenge. Here, roots cannot be readily observed without 
destroying the RSA, which hampers subsequent analysis of the 
plant [8]. Noninvasive methods that can derive the RSA of soil-
grown plants are available but need special imaging devices. 
Magnetic resonance imaging (MRI)—a 3D volumetric image 
acquisition method widely known from medical applications— 
has been used for imaging soil and root systems embedded 
in soil in the past 2 decades [9,10].

To derive RSAs from 3D images in an efficient manner, non-
trivial image processing and pattern recognition are required. 
In recent years, rapid progress has been made in RSA extraction 
and soil-related research [11–13]. Two fundamental steps are 
needed for deriving RSAs from MRI images: the segmen-
tation of roots from the surrounding soil environment and the 
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subsequent reconstruction of the root system from the seg-
mented images [14–16]. The detection of roots in MRI is based 
on the difference in signal decay between water in the roots 
and in the soil [17]. Depending on this difference in signal 
decay, the segmentation task may be easy or difficult to solve. 
For a range of soils, the contrast between roots and soil is so 
high that water in soil is effectively invisible [18]. Under these 
conditions, the MRI scans almost exclusively contain root sig-
nals. Simple segmentation operations, such as applying a single 
global threshold, are adequate to remove the little noise (soil 
signal) contained in the data. However, achieving high contrast 
requires measurement settings, soil substrate, and soil water 
content to be chosen with care [16,19]. As shown by Pflugfelder 
et al. [20], soil water contents above 70% of the maximum water 
holding capacity become problematic in sandy soils and Brown’s 
soil. Although the root signal itself is unaffected, large fractions 
of the soil water signal cannot be suppressed and severely 
obstruct segmentation of roots and soil due to lower contrast. 
Consequently, the range of soils and experimental designs that 
can be readily used in MRI studies is limited, making it diffi-
cult to characterize root plasticity across a wide range of soil 
conditions.

Another challenge when working with MRI images are gaps 
in the roots. These discontinuities may originate in the MRI 
data itself or they may be introduced during image processing. 
As observed by Menzel et al. [21], ferro- and paramagnetic 
particles present in natural soils can lead to local, spherical 
signal losses and general signal deterioration. Findings of 
Pflugfelder et al. [20] suggest that the soil texture also influences 
the image quality, although a strict relationship could not be 
derived over the full range of tested soils. The authors recom-
mend that the suitability of soil substrates be evaluated before 
they are used in MRI studies, as not all aspects affecting image 
quality are well defined. During segmentation, additional gaps 
may be introduced when the contrast-to-noise ratio (CNR) of 
the images is low. In these cases, applying thresholds to achieve 
sufficient visibility of the roots will cause additional disconti-
nuities in the root branches [15]. This is particularly problem-
atic with thin roots, because they may not only be interrupted 
by gaps but can disappear completely.

To obtain a fully connected geometry, the complete RSA 
structure must therefore be reconstructed from the 3D images. 
Reconstructed RSAs can be used to compute root system phe-
notyping traits [22], or they can directly be used as geometries 
in functional-structural root architecture models [15,23–28]. 
However, studies usually do not include more than 3 plants for 
model applications, except when automated or semiautomated 
reconstruction algorithms, such as RooTrak [29], are available 
and applicable to the respective datasets (e.g., in [23,25], where 
12 RSAs have been reconstructed from micro-computed tomog 
raphy image time series). Automated reconstruction methods 
for MRI images have been developed [14–16] but are built to 
work with high-quality inputs. As shown by Schulz et al. [14], 
capabilities of automated reconstruction algorithms for MRI 
are severely impeded if the input has gaps, low CNR, and/or 
low resolution. Although the image resolution can be increased 
by prolonging the image acquisition time, it comes at the cost 
of lower CNR [30]. Hence, manual reconstruction methods in 
3D virtual reality (VR) systems [15] are still widely used to 
process MRI images (e.g., [24]). As manual reconstruction is 
a time-consuming task, data throughput in MRI root analysis 
pipelines is severely limited. Ultimately, improvements to CNR 

as well as to the resolution of MRI images are needed to extend 
the capabilities of automated reconstruction approaches beyond 
the use of high-quality inputs.

Recently, artificial neural networks have become state-of-
the-art to solve many computer vision tasks, including semantic 
image segmentation. The rise of deep learning methods in 
image segmentation can mainly be attributed to their excellent 
abilities in discovering intricate features of interest in large 
datasets [31]. A popular network architecture for 2D image 
segmentation, the U-Net, was introduced by Ronneberger et al. 
[32]. In comparison to other architectures, the method is able 
to achieve good segmentation performance with few training 
samples and can rely on data augmentation when available 
training data is sparse [32,33]. 2D U-Nets have been success-
fully applied to a variety of segmentation tasks, including seg-
menting cells in microscopy images [34], roots and soil in 
rhizotron images [35], solid and gaseous phases in computed 
tomography (CT) images of geological material [36] and seg-
menting pathological lungs from surrounding body tissue in 
CT images. While the 2D U-net showed promising results in 
2D image segmentation, the method has limited abilities when 
applied to volumetric images. Input data is processed slice-by-
slice, ignoring 3D context information. Hence, spatial infor-
mation along the vertical axis is not exploited for global feature 
extraction [37]. This constraint can be overcome when a 3D 
network architecture is applied. Çiçek et al. [38] proposed the 
3D U-Net, which uses 3D volumes as inputs, and demonstrated 
the superior segmentation performance in comparison to an 
equivalent 2D implementation. Since its introduction, the 3D 
U-Net has been widely used in the medical field. The network 
was successfully applied to segment kidney volumes from con-
focal micropscopy images [38], prostate volumes and brain 
lesions from 3D MRI images [39,40], and hearth volumes from 
3D CT scans [41]. Zhao et al. [42] also demonstrated promising 
results for the segmentation of roots and soil in volumetric MRI 
data. In addition to their capabilities in image segmentation, 
neural networks have shown excellent performance in image 
upsampling. They can derive super-resolution outputs using 
transposed convolution, where the interpolation is directly 
learned from the input data [43–45].

In this work, we evaluate a novel 2-step work flow for auto-
matic MRI root system reconstruction, aimed at overcoming 
the aforementioned challenges. In the first step, we apply a 3D 
U-Net developed and trained by Zhao et al. [42] to increase 
CNR and resolution of MRI images by performing a segmen-
tation into roots and soil in super-resolution. This U-Net seg-
mentation still contains gaps and small amounts of noise. In 
the second step, we apply the automated root reconstruction 
algorithm of Horn et al. [46], which has been designed to work 
on imperfect and noisy data. Although both steps have been 
successfully validated by Zhao et al. [42] and Horn et al. [46] 
under technical aspects, we herein test their practical suitability 
for RSA trait quantification and for deriving geometries to be 
used in functional-structural plant models. To evaluate both 
steps of the automated work flow separately, we compare (a) 
manual expert reconstructions of raw MRI images produced 
using our default work flow with (b) manual reconstructions 
performed on the segmented images from Step 1 of the auto-
mated work flow and (c) tracings produced by the fully auto-
mated 2-step work flow. Manual reconstructions are performed 
using a novel, state-of-the-art VR system that allows for optimal 
reconstruction quality. We hypothesize that using the 3D U-Net 
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segmentation will increase the recovered root length in manual 
reconstructions when compared to our default work flow, which 
relies on manually applied global thresholds. For the fully 
automated reconstructions, we hypothesize that the U-Net 
segmentation will allow us to process imperfect data with the 
automated root reconstruction algorithm and derive tracings 
of similar quality to the manual reconstructions. To test these 
hypotheses, we performed an MRI experiment with lupine 
plants grown in 2 different soil substrates, resulting in 2 subsets 
of MRI scans with vastly different image quality. We evaluate 
the quality of the 3 reconstruction work flows for MRI by means 
of visual comparisons of the reconstructed geometries and by 
calculating characteristic root measures. As the true RSA of 
plants grown in opaque soil is unknown, validation is based on 
comparing the reconstructed root lengths to root length data 
derived with WinRHIZO. In addition, we calculate model- 
based functional root traits. In contrast to the (isolated) char-
acteristic root measures, these root traits allow us to investigate 
the integrated functional behavior of the whole RSAs in root 
water uptake. By comparing the equivalent conductance of the 
root systems, as well as the mean depth of water uptake, we can 
assess whether systematic differences in root hydraulic archi-
tecture between tracing methods exist (i.e., due to incorrect 
gap closing or differences in reconstructed root radii) and 
whether they are critical for their functional behavior or can 
be neglected. This is particularly important when evaluating 
the quality of the automated reconstructions to the manual 
reconstructions and thus determining their suitability for use 
in functional-structural root architecture models.

Materials and Methods

Experimental design
The 8 MRI scans of white lupine (Lupinus albus) used in this 
work were gathered in an experiment carried out at the 
Forschungszentrum Juelich. In brief, we used polyvinyl chlo-
ride cylinders (height of 21 cm, inner diameter of 5.6 cm) filled 
with sandy loam (n = 4) and natural sand (n = 4) to cultivate 
lupines. In the following, the sandy loam will be referred to as 
“soil”, and the natural sand will be referred to as “sand”. At the 
beginning of the experiment, the substrate-filled cylinders were 
saturated from the bottom to saturation soil water contents of 
0.36 cm3 cm−3 for soil and 0.38 cm3 cm−3 for sand. Plants were 
grown for 8 to 15 d in a laboratory at a relative humidity of 
approximately 45%, a temperature of approximately 25 °C and 
a day–night cycle of 12 h/12 h. Photosynthetic active radiation 
during the day was 450 ± 50 μmol m−2 s−1. The 8 experimental 
containers were scanned by MRI at different time points (Table 
1). Subsequently, the roots were excavated and washed. They 
were then scanned with an Epson flatbed scanner with a resolu-
tion of 0.005 mm in horizontal and 0.01 mm in vertical direction. 
The scans were analyzed with WinRHIZO (Regent Instruments, 
Ottawa, Canada) to determine total root length. A detailed 
description of the experiment is available in the Supplemental 
Materials (Section S1.1).

MRI measurements
MRI measurements were performed with a 4.7-T super-wide-
bore MRI scanner (Bruker, Rheinstetten, Germany), at water 
contents between 0.25 and 0.36 cm3 cm−3. An overview of the 
parameters at scanning time is given in Table 1. Images were 

acquired using Bruker’s multislice multi echo imaging pulse 
sequence with a single echo readout (Bruker BioSpin MRI 
GmbH). Echo time for sand was tE = 6 ms and for soil tE = 5 ms 
with an acquisition bandwidth of 150 kHz, a matrix size in the 
horizontal plane of 256×256 points, 2 averages, and a repetition 
time of tR = 5 s. The axial field of view was 70 mm ×70 mm, 
resulting in a resolution of 0.273 mm for 70 axial slices with a 
thickness of 0.9 mm in interlaced mode with a gap of 0.1 mm, 
so that the vertical field of view was also 70 mm. Due to their 
large height, samples were scanned in 3 sections (top, middle, 
and bottom). Subsequently the 3 sections needed to be stitched 
together and to be dewarped due to the gradient nonlinearity 
artifact in our MRI system. The detailed description of the per-
formed image processing is included in Section S1.2. An exem-
plary root system, resulting from the dewarping and stitching 
procedure, is depicted in Fig. 1.

Root reconstruction methods
Two-step work flow for MRI image segmentation and  
root tracing
Step 1: Image segmentation in super-resolution via 3D U-Net

To improve the resolution and CNR of the MRI data, we 
employ the 3D U-Net previously trained and described by Zhao 
et al. [42]. CNR is improved by decreasing the intensity of pos-
sible noise voxels while increasing the intensity of root voxels. 
The U-Net increases the resolution by a factor of 2 along all 
axes, resulting in a factor of 8 for the number of voxels. This 
image preprocessing is referred to as “Step 1” of the automated 
reconstruction work flow.

The dataset used to train the network was combined from 
2 subsets. The first dataset (Fig. 2A and B) was generated based 
on 3 MRI scans of soil-grown plants and their corresponding 
manual root system reconstructions. The manual reconstruc-
tions (Fig. 2A) were transformed into 3D paths using thin-
spline interpolation. Given a path, a 3D tube is constructed 
around it depending on the reconstructed radius. To increase 
data variety, the reconstructed radius is scaled by 1

3
, 2
3
, 1, and 4

3
. 

In a second step, these roots are rotated along the height axis 
by 0, 120, and 240. This results in a total of 12 different aug-
mentations for each of the 3 manual reconstructions. To fur-
ther increase variability of the training set, these augmented 

Table 1. Properties of soil-grown Lupinus albus plants at time of 
MRI scan.

Root system # Substrate Plant age (d)
Water content 

(cm3 cm−3)

1 Sand 14 0.36

2 Sand 14 0.31

3 Sand 8 0.33

4 Sand 8 0.32

5 Soil 14 0.34

6 Soil 15 0.25

7 Soil 9 0.30

8 Soil 8 0.32 D
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reconstructions were then combined with virtual soil data (Fig. 
2B), simulated based on observed soil noise in real MRI 
images. This is combined with the second dataset (Fig. 2C and 
D), which consists of 30 synthetic root systems generated by 
randomly growing a path starting from a given shoot. After 
some distance, a path may split. If this is the case, a second path 
grows at a random angle, sampled from a defined interval, while 
the original path is continuous. These path are then surrounded 
depending on randomized radii. The resulting synthetic root 
systems (Fig. 2C) were then combined with noise sampled from 
real MRI images of pure soil (Fig. 2D). To stay within limita-
tions of GPU memory and to allow for a deeper network archi-
tecture, the training was performed on 3D image crops of the 
combined dataset. Variability of the 3D image crops was again 
increased by augmenting image parameters, such as the con-
trast between root and soil. Image crops were drawn from the 
combined dataset and split into a training set and a validation 
set. Validation of the U-Net on the image crops resulted in a 

distant-tolerant F1 score of 0.96 [42], indicating good segmen-
tation performance. The evaluation of the trained model, based 
on a test set of 5 whole (real) MRI images and their correspond-
ing manual reconstructions, showed that it was able to detect 
most root branches correctly. Nevertheless, the current imple-
mentation of the U-Net does not consider connectivity of roots 
to the shoot during segmentation, so gaps in the roots caused by 
missing input information are neither recognized nor bridged. 
Hence, the segmented 3D images still contain false nega-
tives corresponding to disconnections/gaps in the roots, small 
amounts of false positives corresponding to noise, and false 
positives corresponding to roots missed by the human recon-
structors. Additional information on the 3D U-Net is available 
in the study of Zhao et al. [42].

Here, we used the 3D U-Net to increase the CNR and res-
olution of the MRI dataset described above. The U-Net seg-
ments the MRI images into root and soil in super-resolution. 
The horizontal resolution of the MRI input data is increased 
from 256×256 to 512×512 pixels, vertical slice distance is also 
halved. Subsequently, we use these segmented images in the 
algorithm-based reconstruction approach as well as in our 
manual reconstruction setup.
Step 2: Automated tracing algorithm

We use the root reconstruction algorithm developed by 
Horn et al. [46], herein referred to as “Step 2” of the automated 
reconstruction work flow, to create automated tracings (A). The 
algorithm itself takes a 2-stage approach and is designed to 
work with imperfect and noisy input data.

In the first stage, the algorithm applies operations aimed at 
improving the input files once again, by considering the con-
nectivity of the roots to the shoot as additional metric. Starting 
with the segmented input image derived by the U-Net (Fig. 
3A), a start point at the uppermost shoot position of the root 
system is automatically set. Additionally, a minimum voxel 
intensity is given. Dijkstra’s shortest path algorithm [47] is used 
to extract the largest connected component. A cost map is 
derived from local radius estimates and signal intensity infor-
mation and used to evaluate the cost of all voxels above the 
minimum voxel intensity (Fig. 3B). Low costs correspond to a 
high probability of a voxel being root. High-cost paths from 
voxels to the shoot are penalized, and paths above a defined 
path-cost threshold are excluded from the extraction, further 

Fig. 1. Maximum intensity projection of a MRI scan of a 14-day-old lupine root system 
grown in sand after dewarping and stitching (resolution 0.27 × 0.27 × 1 mm3).

Fig. 2. Exemplary visualization of data used for training the U-Net. (A) Rendering of manual reconstruction. (B) Virtual soil data. (C) Synthetic root system. (D) Real slice of 
pure MRI soil.
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reducing noise. For imperfect data (i.e., data with gaps), this 
rigid exclusion of low-intensity voxels and high-cost paths 
means that portions of the root system will not be extracted. 
To address this issue, the shortest path algorithm is modified 
and extended with an option to bridge gaps of a predefined 
maximum gap length. An updated cost map with enhanced 
contrast between gap and no-gap voxels is created to allow the 
algorithm to connect discontinuous root segments under the 
defined maximum gap length (Fig. 3C). The largest connected 
component resulting from this first stage is a binary volume 
that excludes noise clusters that are farther than the maximal 
gap length from the roots and in which root segments are con-
nected by a unique connection (Fig. 3D). This fully connected 
volume now allows the extraction of a root skeleton.

In the second stage, a modified version of the 3D curve skel-
etonization algorithm described in the study of Jin et al. [48] is 
used to extract a root structure graph. A detailed description of 
the gap-closing modification to Dijkstra’s shortest path algorithm 
[47] and the modification to the 3D curve skeletonization algo-
rithm by Jin et al. [48] is given in Sections S2.1 and S2.2. Further 
information is also available in the study of Horn et al. [46].

Manual tracing in VR
We developed and deployed a new VR system for the manual 
tracing of root systems. Unreal Engine is utilized as frontend 
and Python/VTK as backend for the computation of geometries 
from MRI scans. Geometries are visualized as opaque marching 
cubes isosurface and can be dynamically adjusted by applying 
different signal cutoffs (global thresholds) to the intensity values 
of the 3D images. This allows to define the desired signal con-
trast between roots and soil and also to change it during a recon-
struction. The user wears a head-mounted display and interacts 
with the VR system by using tracked controllers, whose position 
and orientation are indicated by a digital copy in VR. The dis-
played data can be moved, scaled, and rotated to give the user 
an optimal perspective on different areas of the root systems in 
VR. We chose Root System Markup Language as described by 
Lobet et al. [49] as output format, a data format for RSA widely 
used in phenotyping and modeling applications. The hardware 
setup consists of a HTC VIVE Pro head-mounted display with 
HTC VIVE controllers (version 2018) connected to a midrange 
desktop computer with a NVIDIA GeForce RTX 2060 SUPER 
GPU, an Intel Core i7-8700K CPU, and 32 GB of RAM.

The manual reconstruction work flow in VR is displayed in 
Fig. 4. For this schematic illustration, the point of view in VR 
was kept constant. To start the root system tracing, the user 
loads a raw image file of a scan into the VR system (Fig. 4A). 

The user then picks a signal threshold that allows to differentiate 
roots and soil as good as possible. Next, a parenting node (i.e., 
the uppermost point of the tap/primary root) can be defined 
by clicking on the respective position on the opaque isosurface. 
A circular disk appears at the position of the node and can be 
scaled to the radial dimensions of the isosurface to define the 
node radius. Now, the user follows the isosurface resembling 
the tap/primary root and defines a second node (Fig. 4B). As 
soon as the tap/primary root consists of 2 segments (Fig. 4C), 
lateral roots can be created by selecting an inner node and draw-
ing a new root segment (Fig. 4D). The VR system also allows 
corrections and manipulations of the constructed root graph.

Manual tracing was performed by a single person to avoid 
human reconstruction bias. First, we reconstructed the tap/
primary root top to bottom. At all visible branch points, we 
made a tap/primary root node to facilitate later tracing of lat-
erals (Fig. 4C). Then, laterals were reconstructed following the 
tap/primary root from bottom to top (Fig. 4D). We aimed at 
reconstructing as many roots as possible (Fig. 4E). Depending 
on the CNR of an image, the number of gaps, and their length, 
this may require applying multiple global thresholds and much 
manual gap closing. The manual gap closing relies on educated 
guesses that consider similarities in appearance, radius, orien-
tation, position, and trajectory of disconnected root segments.

First, we used this system to perform a manual tracing based 
on the raw MRI images (M) (Fig. 4A). Multiple adjustments of 
the threshold were needed to achieve sufficient visibility of all 
roots. Second, we used the system to perform manual recon-
structions based on the images segmented by the 3D U-Net 
(Fig. 4F), subsequently termed M+. Due to memory restric-
tions of the manual reconstruction setup, the super-resolution 
outputs from the U-Net needed to be scaled down. To achieve 
this, the U-Net was adapted to map the super-resolution out-
puts to the original scan resolution of 256 × 256 pixels. The 
initial threshold of our manual reconstruction setup (30% of 
maximum signal-intensity) provided a good balance of roots 
and noise. Hence, no adaption of this threshold was needed 
when working on the segmented images.

Measures to determine success
Visual comparison of tracings
We show the RSAs resulting from the M, M+, and A reconstruc-
tion methods of MRI images, with the root order per segment 
color-coded (Figs. 5 and 6). RSAs in the result section are cropped 
to highlight areas of interest. The complete reconstructions are 
accessible in Figs. S3 and S4. Root segments are scaled with the 
radius determined by the respective reconstruction method. The 

Fig. 3. Largest-connected-component extraction with gap closing. (A) Segmented input in intensity. (B) Voxel cost. (C) Adapted cost map for gap closing. (D) Extracted largest-
connected component. © [2021] IEEE. Reprinted, with permission, from Horn et al. [46].
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visualization allows qualitative evaluation of differences between 
the manual reconstruction methods, due to working on raw MRI 
data or on the U-Net segmentation (Step 1, see Fig. 4A and F), as 
well as evaluation of the volume extraction and topological tracing 
performed by the algorithm in the A tracing.

Quantitative measures
We calculate a selection of common root measures [50] to 
describe RSA and robustness against reconstruction errors of 
the root systems obtained by the M, M+, and A reconstruction 
methods. In the results section, the metrics of each reconstruc-
tion method are aggregated over the root systems and presented 
in tabular form. An overview of the calculated root system 
measures is given in Table 2. We use CPlantBox [51,52] to load 
the Root System Markup Language files of the tracings and 
then calculate the root measures. In addition to the common 
root measures, we evaluate differences in root hydraulic archi-
tecture of the reconstructions by calculating the model-based 
functional root system metrics Krsc and zSUF for 2 scenarios. 
In the first scenario, called constant scenario, we calculate the 
functional metrics by applying the same fixed axial and radial 
conductivities to all roots. For the second scenario, called var-
iable scenario, we apply order and age-dependent root hydrau-
lic properties. Used age-distribution and conductivity values 
are accessible in Figs. S1 and S2.

Three additional measures, not directly related to the RSAs, 
are included in the results section to enable a more in-depth 
classification of the results. The available root length informa-
tion from WinRHIZO measurements, RLWR, is used to calculate 
the recovery rate. The recovery rate is the best available metric 
for quantitative validation of root system reconstructions of 

plants grown in opaque soil. For the M and M+ reconstructions, 
we also report the respective reconstruction speed, vr. To give 
an estimate of the quality of the MRI images, we calculate an 
exemplary CNR for the raw images. All equations used for the 
calculation of the variables in Table 2 are given in Section S3.

Statistical analysis
All quantitative measures, except CNR, were statistically ana-
lyzed using R 4.2.1 [53] with RStudio 2022.2.3.492 [54] and 
the packages rstatix 0.7.0 [55] and ggpubr 0.4.0 [56]. Because 
of systematic differences in RL and CNR of plants grown in 
sand and soil of the MRI experiment, we divided the 8 plants 
into 2 groups and performed separate statistics. As we are 
interested in the differences between the applied reconstruc-
tion methods and not in the differences between the root sys-
tems, we subsequently grouped the reconstructions according 
to the reconstruction methods M, M+, and A resulting in 3×4 
reconstructions per substrate. Consequently, we consider the 
root systems as subjects (n = 4), the reconstruction methods 
as repeated measures of the same subject (i.e., within-subject 
factor with 3 levels), and the root metrics as the dependent 
variables. In the results section, we only report the mean values 
of the groups M, M+, and A. The individual values per recon-
struction method and root system are included in Tables S1 
and S2.

We tested the within-subject levels of each analyzed depend-
ent variable for normal distribution by means of Shapiro-Wilk 
tests. With the exceptions of total root tips, second- and third-order 
laterals for the reconstructions of the MRIsand subgroup, and 
second- and third-order laterals for the reconstructions of the 
MRIsoil subgroup, the assumption of normality was met. For the 

Fig. 4. Manual root system reconstruction work flows based on images from the VR application. Shown are the marching cubes isosurfaces of an MRI scan at different signal 
thresholds (gray) and manual tracings with color-coded root orders at different reconstruction stages. (A) Raw image of MRI scan as displayed in VR. (B) Threshold adjustment 
for improved visibility of roots, drawing and adjusting the radius of the first tap root segment. (C) Reconstructing the tap root while creating nodes at potential branching 
points. (D) Reconstruction of laterals from bottom to top. (E) Finalized manual tracing. (F) U-Net segmentation in VR. Work flow M is based on (A), M+ and A are based on 
segmented images (F).
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variables following normal distribution, we performed repeat-
ed-measures analysis of variance (ANOVAs) to test for signifi-
cant differences between the reconstruction methods. During 
the ANOVA, the criterion of sphericity was tested. In case sphe-
ricity was not met, a Greenhouse–Geisser correction was 
applied. If the repeated-measures ANOVA revealed significant 
differences between the reconstruction groups, we performed 
multiple pairwise, paired, 2-sided t tests (M to M+, M to A, M+ 
to A), to locate significant differences between the groups. Due 
to the multiple comparisons, the P values of the ANOVA were 
corrected with the Holm–Bonferroni method. For the afore-
mentioned cases of non-normally distributed variables, we per-
formed a Friedman test as nonparametric alternative. All 

statistical tests were performed at α = 0.05. We report significant 
differences of the post-hoc tests in the tables displaying the root 
measures. Significant differences found by the repeated-measure 
ANOVAs are indicated by superscript lowercase letters, and 
significant differences found by the Friedman test are reported 
by superscript uppercase letters. If no letter is specified, the 
mean values are statistically indifferent.

Results

Visual comparison of tracings
RSAs of the 8 lupine root systems derived by the M, M+, and 
A reconstruction methods are displayed in Figs. 5 and 6. The 

Fig. 5. Manual tracings M (left), manual tracings after segmentation M+ (middle), 
and automated tracings A (right) of 4 Lupinus albus root systems (A to D) grown in 
sand derived by MRI scans. Reconstructions are cropped to show areas of interest. 
Colors display root orders, and root segments are scaled by their respective radius. 
Age of the root systems is between 8 and 14 d (see Table 1).

Fig. 6. Manual tracings M (left), manual tracings after segmentation M+ (middle), 
and automated tracings A (right) of 4 Lupinus albus root systems (A to D) grown in 
soil derived by MRI scans. Reconstructions are cropped to show areas of interest. 
Colors display root orders, and root segments are scaled by their respective radius. 
Age of the root systems is between 8 and 15 d (see Table 1).
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age of the root systems is between 8 and 15 d (see Table 1). Note 
that the MRIsand and the MRIsoil datasets each consist of 2 
younger (≈8 d) and 2 older (≈15 d) plants. Therefore, we 
observe a large variability in appearance between the root sys-
tems of the same dataset caused by the age differences but also 
between the root systems of the 2 datasets obtained in different 
soil substrates. For the root systems grown in sand (Fig. 5), we 
can observe differences in root lengths between the M+ and 
M reconstructions. With the exception of the root system in 
Fig. 5C, all M+ reconstructions include roots that are not pres-
ent in the M tracings. The additional roots are mainly of first 
order. We also observe slight increases in the length of some 
roots that are detected in both reconstructions, being longer in 
the M+ reconstruction. Except for the additional root length 
included in the M+ reconstruction, the similarity of roots pres-
ent in both manual reconstructions in terms of root order, root 
orientation, and root position is very high. Therefore, working 
on the segmented images does not have much impact on 
human decision making for roots that can also be identified 
when working on the raw MRI images. An exception to this 
observation is the mean root radius, which is qualitatively 
larger for the M+ reconstructions.

When we compare the volumetric extraction of the A trac-
ings to the manual tracings, we observe differences to M as well 
as to M+. Qualitatively, the difference in root radii between A 
and M+ is smaller than between M and M+. The total root 
length of A is lower than in M and M+ (see e.g., Fig. 5B), with 
A being more similar to M than to M+. Additionally, we 
observe an increased amount of directional changes in the root 
trajectories of A. These frequent changes in direction can lead 
to step-like root trajectories (see, e.g., upper half of Fig. 5C). 
Some roots present in both manual reconstructions are missing 
in A (see, e.g., lower section of Fig. 5B). This indicates that a 

portion of the gaps present in the U-Net segmentation is still too 
large to be successfully bridged by the algorithm. Furthermore, 
we can observe that parts of the root systems in A have different 
connectivity than in M and M+. As visible in the upper-right 
part of the root system in Fig. 5A, the algorithm traces the 3 
second-order lateral roots differently than the human recon-
structor. Here, gaps in the segmented image could be bridged 
to some extent. However, gaps too large to be bridged eventu-
ally result in partial root losses as well as in different connec-
tivity of the recovered root segments. Incorrect gap closing 
seems to occur especially when gaps between interrupted 
segments of the same root are larger than the distance to an 
uninterrupted root in direct vicinity. The different connectivity 
caused by the partial recovery then shifts order of the respective 
segments toward higher values. Further topological errors in 
A may be caused by the fact that the topological tracing logic 
applied by the algorithm is not yet suitable for all cases. In case 
of root system in Fig. 5C, the algorithm identifies a wrong root 
as the tap root, although the extracted volume suggests other 
candidates. Again, the orders are shifted toward higher values 
when compared to M and M+.

For the 4 root systems grown in soil (Fig. 6), differences 
between the extracted structures are smaller than for the sys-
tems grown in sand. The M+ reconstructions do not include 
substantial amounts of additional roots or longer roots than 
the M reconstructions. In terms of the extracted volumes, same 
holds true when comparing M and M+ to A: although there 
are still some gaps present (e.g., upper third of root system in 
Fig. 6A), the volume extraction of the algorithm is more com-
plete. However, the topology derived on the extracted volumes 
again shows errors. In cases of the root systems in Fig. 6C and 
D, the errors are caused by gaps in the upper part of the tap 
root, which could not be successfully closed by the algorithm. 
Additionally, we observe errors in topology that are related to 
merging root structures in the volume extraction. Such merged 
structures can be caused by roots that are in direct contact with 
each other. An example of this issue can be seen in the upper 
region of the A reconstruction in Fig. 6C. The uppermost second- 
order lateral root emerging from the tap root splits into 2 sep-
arate roots. When compared to the manual reconstructions, it 
becomes apparent that this second-order lateral root actually 
consists of 2 separate second-order laterals. Therefore, it should 
be connected to the tap root by 2 separate connections that do 
not branch later on. In the cases of root systems in Fig. 6A and 
B (see also Fig. S4B), topological errors related to the topolog-
ical tracing logic of the algorithm seem to cause a wrong tra-
jectory of the tap root in the lower third of both root systems. 
The same applies to other parts of the A tracings, e.g., the ring 
at the bottom of the system in Fig. 6B (see also Fig. S4B), where 
the volume extraction should generally allow a more precise 
determination of root orders.

Quantitative measures
Table 3 shows the root measures derived for the MRI root sys-
tems grown in sand and soil. The CNR of the MRI images 
derived for the plants in the 2 substrates differs substantially. 
Images acquired in sand have a CNR of 11, resulting in poor 
contrast between roots and soil and a large number of gaps in 
the roots, which are also of considerable length. MRI images 
taken in soil have a comparably high CNR of 171, translating 
to much better contrast between roots and soil and less missing 
information in form of gaps. This is probably due to the high 

Table 2. Characteristic root system measures.

Variable Description

RLWR Root length measured by WinRHIZO (cm)

CNR Contrast-to-noise ratio (-)

RL Root length of reconstruction (cm)

Recovery rate Recovered root length against WinRHIZO 
(%)

RLD Root length density (cm cm−3)

HMD Half-mean distance (cm)

rmean Mean radius of root system (cm)

Krsc Equivalent root system conductance for 
constant root hydraulic properties (cm2 

d−1)

Krsv Equivalent root system conductance for 
variable root hydraulic properties (cm2 d−1)

zSUFc Standard uptake fraction for constant root 
hydraulic properties (cm)

zSUFv Standard uptake fraction for variable root 
hydraulic properties (cm)

vr Manual reconstruction speed (cm min−1)
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soil water content at scanning time, which is MRI visible in 
sand, other than in soil. The slower relaxation in nearly satu-
rated sand cannot be faded out completely by the choice of the 
weakly T2-weighted pulse sequence with tE = 6 ms: latter is a 
compromise between getting sufficient signal from roots and 
suppressing the signal from sand. For soil with its inherently 
fast relaxation, the sequence works far better.

For the root systems grown in sand, the quantitative meas-
ures support the initial findings of the visual comparison. We 
see differences in RL between M, M+ and A, translating to 
recovery rates of 64% for M, 78% for M+, and 60% for A. 
Significant differences are found for the pair {M+,A} but not 
for the pairs {M,M+} and {M,A}. Root length density (RLD) 
and half-mean distance (HMD) of the reconstructions follow 
the same pattern as RL and are therefore on a similar level as 
RL for all reconstruction methods. As root growth is confined 
by the experimental containers, we observe a linear increase of 
RLD with increasing RL. The mean radius, rmean, derived in the 
manual reconstructions M and M+ is significantly different, 
with a higher radius occurring when working on the segmented 
images, while there are no significant differences to the mean 
radius determined in the A tracings. The total number of roots 
found by M+ is higher than M. These additional roots are 
almost exclusively first-order laterals.

Although the RL is lower, there are more roots found in A than 
in both manual reconstructions. These additional roots are of 
higher orders, as well as of orders (>higher than third-order lat-
eral) that are generally not detected by the human reconstructor. 
Remembering the visual comparison, this inflation of root order 
is to be expected. It is likely associated to errors made by the 
algorithm and not to errors made during the manual reconstruc-
tion: partial gap closing leads to different connectivity, and com-
bined with general problems in the topological decision making 
of the algorithm (e.g., incorrect determination of the tap root), 
the distribution of roots per order is skewed to higher values. 
Although these issues inflate the root orders in A, partial gap 
closing makes the other root measures more robust, as it still helps 
to recover larger fractions of RL.

Interestingly, the differences in RL and connectivity between 
the manual reconstructions and A do not transfer directly to 
the Krsc values. We observe significant differences between M 
and M+, while the Krsc value of the A tracings is statistically 
equivalent to M and M+. As this simulation scenario applies 
the same axial and radial conductivity values to all root seg-
ments, the water uptake of a root segment largely depends on 
its respective root radius. Hence, the higher similarity in mean 
root radii between M+ and A has greater impact on Krsc than 
the observed differences in root length and connectivity of A 

Table 3. Comparison of root measures for Lupinus albus tracings derived by MRI scans. MRIsand gives the mean values of the 4 root systems 
grown in sand (see Table S1), MRIsoil gives the mean values of the 4 systems grown in Kaldenkirchen soil (see Table S2). M denotes manual 
tracings derived using unaltered MRI images, M+ denotes manual tracings performed on the U-Net segmentations, and A denotes tracings 
derived by the 2-step automated work flow. Superscript lowercase letters denote statistically significant differences between the mean 
values of the reconstruction types M, M+, and A within the dataset MRIsand and MRIsoil, as determined by repeated-measures ANOVAs and lo-
cated between the mean values of the groups by 2-sided t tests. Superscript uppercase letters indicate significant differences between the 
mean values as determined by Friedman tests and located between the mean values of the groups by 2-sided t tests. If no letter is specified, 
the mean values are statistically indifferent (see the statistical analysis section). Descriptions of the quantitative measures are given in the 
quantitative measures section, and equations of measures and descriptions of the constant and variable simulation scenarios are given in 
Section S3. Note that Krs and zSUF are simulated and not measured quantities (see Eqs. S4 to S6).

Dataset MRIsand MRIsoil

Reconstruction method M M+ A M M+ A

CNR (-) 11 - - 171 - -

RL (cm) 92 110 85 226 231 221

Recovery rate (%) 64ab 78a 60b 88 91 84

RLD (cm cm−3) 0.20 0.24 0.19 0.50 0.51 0.48

HMD (cm) 1.3 1.2 1.4 1.0 1.0 1.1

rmean (mm) 0.26a 0.34b 0.32ab 0.26 0.28 0.26

# of roots (-) 22 36 53 79 91 111

# of first laterals (-) 17 28 20 38 38 25

# of second laterals (-) 4 6 18 38 50 53

# of third laterals (-) 0 1 11 2 2 24

Krsc (cm2 d−1) 2.0E−03a 2.8E−03b 2.4E−03ab 3.3E−03 3.5E−03 3.2E−03

Krsv (cm2 d−1) 1.0E−02 1.3E−02 1.1E−02 1.3E−02 1.4E−02 1.2E−02

zSUFc (cm) −4.5 -4.3 -4.6 −6.5 −6.3 −6.5

zSUFv (cm) −3.5 −3.1 −3.5 −4.3 −4.1 −4.1

vr (cm min−1) 3.3a 65b − 5.8a 7.4b −
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to M and A to M+. The mean depth of root water uptake, 
zSUFc, is statistically indifferent for all reconstruction methods. 
Again, values of M+ and A are more similar than M to M+ and 
M to A. Root water uptake in the constant scenario can be 
allocated to a mean depth of approximately 4.4 cm over all 
reconstruction methods. The more realistic parameterization 
of the variable simulation scenario that explicitly assigns dif-
ferent radial and axial conductivities to the tap root and 
first-order laterals, as well as varying them for all root segments 
based on their respective radii and interpolated age, does not 
result in larger differences of the root water uptake metrics. Krsv 
of M+ and A are further harmonized. We see that this param-
eterization decreases the mean depth of root water uptake to 
values between 3.1- and 3.5-cm depth. The difference of M+ 
to M as well as to A is higher. This can be explained by the fact 
that all root systems possess a high number of laterals in the 
upper region. As the variable scenario attributes a higher radial 
conductivity to the lateral roots, root water uptake is shifted 
toward areas with high RLD and zSUFv decreases. The effect is 
more pronounced for M+, since increases in recovery rate are 
mainly obtained in the upper region of the root systems (see, 
e.g., Fig. 5B and D).

The difference in reconstruction rate vr, calculated according 
to Eq. S8, between M and M+ is statistically significant. For the 
M work flow, we record an average vr of 3.3 cm root per minute. 
This rate is almost doubled (+97%) when working on the U-Net 
segmentation in M+. For images gathered in sand, the manual 
reconstruction is greatly hindered by the poor CNR. In addi-
tion to substantial gaps in the data that have to be connected 
to the fullest extent possible, noise prohibits identification of 
small and thin root segments severely. When performing the 
M reconstructions on unaltered images, multiple thresholds 
have to be set in order to identify the general trajectory of the 
roots, as well as to recover unconnected parts of the roots 
within gaps. This results in much larger reconstruction times. 
When working on the segmented image, in which most of the 
soil signal is successfully removed, the gap closing becomes less 
challenging. Visibility of roots is improved and closing gaps is 
easier because the gaps are not as numerous or as large as in 
the thresholded raw data.

For plants grown in soil, differences between the 3 recon-
struction types are small. We record RLs of 226 cm for M, 231 cm 
for M+, and 221 cm for A. Resulting recovery rates range 
between 88% and 91%. Due to the highly similar RLs, differ-
ences in RLD and HMD are also small. In this case, we also 
observe higher similarity of the mean root radii for all recon-
struction methods. The significant difference in mean radius 
between M and M+ is not present for the reconstructions of 
soil. The number of root tips is slightly increased from 79 to 91, 
when comparing M to M+, suggesting that the small increase 
in RL can largely be attributed to finding additional roots. More 
specifically, the exact same number of first-order laterals is 
recorded while the increase in total number of roots is solely 
composed of second-order laterals. Again, the segmented image 
allows detection of additional roots that are of the same order 
as present in the M reconstruction. Although the number of 
total roots found in A is the highest, the number of first-order 
laterals in A is lower than in M and M+. Once more, an increased 
number of ≥ third- and higher-order laterals (see Fig. 6), sug-
gests that this increase is caused by partial gap closing combined 
with general errors in the topological decision making of the 
algorithm. Krs and zSUF of all 3 reconstruction methods are 

highly similar for the constant and variable simulation scenar-
ios, indicating equivalent behavior in root water uptake. Again, 
we observe an increase in the reconstruction rate vr. Although 
not as prominent as for the root systems grown in sand, we still 
record a statistically significant increase of 27% in vr. The rea-
sons for this increase are the same as for the root system grown 
in sand, but here, the manual thresholding achieves a more 
similar quality to U-Net segmentation.

Discussion
In this work, we tested a novel 2-step work flow for automated 
root system reconstruction from noisy, imperfect 3D MRI 
images. Both steps of the automated work flow were investigated 
for their suitability to improve or replace the currently used 
manual work flows—under practical conditions. We could show 
that 3D U-Net segmentation provides fundamental improve-
ments to the manual work flow for the low CNR dataset MRIsand. 
Substantial increases in mean reconstruction rate (+97%), in 
root length (+20%), and in root recovery rate (+14%) could be 
achieved (see Table 3). For the MRIsoil dataset with a high CNR, 
the benefits of using the U-Net segmentation were smaller: 
reconstructed root length was increased by 2%, root recovery 
rate by 3%, and reconstruction rate by 27%. These results are 
consistent with our initial hypothesis. When CNR is low, man-
ually set thresholds have limited capability in segmenting the 
images into root and soil, which is in line with results reported 
by Pflugfelder et al. [20] for data derived under similar condi-
tions as the MRIsand dataset. It is tedious and time-consuming 
to achieve sufficient visibility of the whole target structure. 
Multiple thresholds need to be applied, since root signal inten-
sities vary over a wide range and are close to or overlap with soil 
intensity values. Imposing these thresholds results in a substan-
tial number of gaps in the root structure and loss of smaller 
roots, as low-intensity parts of the root system will be cut off. 
This cutoff of low-intensity values also led to significant differ-
ences in mean root radii of M and M+ (see MRIsand in Table 3). 
At low CNR, applying high signal intensity thresholds to increase 
root–soil contrast can thin out roots, especially low-intensity 
root signals at the root–soil boundary. Under these low CNR 
conditions, the 3D U-Net offers a segmentation performance 
that cannot be matched by manual thresholding. Gaps in the 
target structure are less frequent, smaller, and a higher number 
of low-intensity roots that are close to the signal intensity of the 
unsuppressed soil signal are still preserved in the segmented 
images. The additional roots found when working on the seg-
mented images in M+ were of the same orders as present in M. 
Hence, the U-Net segmentation increased the general visibility 
of roots but did not allow the identification of potentially present 
thinner roots of higher orders. On average, the M+ reconstruc-
tions still lacked ≈22% of the roots in sand and ≈9% in soil. As 
the performed WinRHIZO analysis did not derive order-specific 
root measures, we cannot characterize this missing root fraction 
precisely. In general, MRI protocols suitable for deriving RSAs 
from soil-grown plants have a minimum detectable root radius, 
which, for example, was experimentally determined to be ≈0.1 
mm for the protocol used by van Dusschoten et al. [16]. On the 
other hand, the increase in recovery rate of M+ in sand can be 
strictly attributed to finding additional roots of similar radius 
than found in M; same is true for the small increase in recovery 
rate in soil. In future experiments, the WinRHIZO analysis 
should include a quantification of root measures per root order. 
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This would allow us to determine whether the missing root frac-
tion consists of additional roots with similar radii to the detected 
roots or whether a fraction of the roots is below the MRI detec-
tion limit.

For images with high CNR, the benefits of the U-Net seg-
mentation in manual reconstruction are obviously reduced. As 
shown for the MRIsoil dataset, root metrics derived by M and 
M+ are highly similar (see MRIsoil in Table 3). The intensity 
thresholds needed to suppress the soil signal are smaller than 
in sand. Consequently, the higher contrast allows more suitable 
thresholds that exclude smaller portions of the root signal. The 
27% increase in reconstruction speed is nonetheless interesting, 
as it emphasizes an additional benefit of the U-Net segmenta-
tion: decrease of human reconstruction bias due to a more 
complete target structure. Most of the time spent on manual 
reconstruction of raw MRI images was on finding appropriate 
thresholds and interpreting gaps. As shown by Bauer et al. [57] 
for the case of 2D rhizotron images, the variability between 
individuals reconstructing imperfect images (i.e., gaps in the 
target structure) can be large. Based on our experience, this 
also applies to 3D MRI images. It can be assumed that the 
amount of missing information in the input files is strongly 
correlated to the divergence of reconstructions performed by 
different individuals. One aspect of this divergence is the gen-
eral ambiguity that is introduced by gaps in the data, as gap 
closing is a subjective task. Small and isolated gaps require little 
interpretation, while a large number of gaps of considerable 
length leads to ambiguity in the interpretation of the target 
structure (see Fig. 4). Another aspect are the thresholds chosen 
to visualize the data. Depending on time expenditure and initial 
guesses, this procedure can have a certain hit-or-miss character. 
As the U-Net segmentation offers a way to standardize the 
thresholding procedure while reducing the amount of missing 
information in the target structure, we conclude that this image 
preprocessing approach should lower human reconstruction 
bias in manual work flows severely. Since the use of the 
segmented images also increases the recovery rate and the 
reconstruction speed, we propose that an improved manual 
work flow for MRI images, as demonstrated in this work 
with the M+ work flow, can be created by utilizing the U-Net 
segmentation.

Finally, the differences in recovery rates between the MRIsand 
and MRIsoil datasets highlight the need for careful interpretation 
of the derived root metrics. Although we could decrease the 
difference between low- and high-contrast data, there still is a 
systematic difference in the recovered root length for the 2 
substrates (i.e., ≈13% between M+ of sand and soil). Since the 
amount of roots obtained from MRI data has been shown to 
vary depending on the used soil substrate [20], the differences 
in root metrics cannot be attributed solely to root system plas-
ticity. Destructive measurements at the end of the experiment, 
or destructive empirical preliminary tests, are still necessary to 
distinguish whether differences are caused by root plasticity or 
by measurement-related factors.

The second step of the automated work flow, an algorithm- 
based root system reconstruction performed on the U-Net 
segmentation in super-resolution, showed promising results 
for the MRI datasets. First, the super-resolution segmentation 
allowed us to derive meaningful automated reconstructions of 
the MRIsand data. Since these low CNR data are notoriously 
difficult to process in automated reconstruction approaches, 
this in itself is an achievement. Although the recovery rate of 

the automated tracings is lower than in both manual recon-
struction approaches (see Table 3, −5% to M, −17% to M+), 
root metrics of A are generally on a similar level as M. More 
intriguingly, differences in the radii derived by M and M+ have 
a larger impact on root system functioning and simulated root 
water uptake than the roots missing in A. Hence, we also make 
substantial errors when processing challenging raw data in our 
default work flow M. With exception of the root system in Fig. 
5C, all geometries derived by the automated work flow for the 
MRIsand dataset seem suitable for use in structural-functional 
plant models (see Fig. 5 and Fig. S5). Same can be stated for 
the automated reconstructions of the high CNR dataset MRIsoil 
(see Fig. 6 and Fig. S6). We did not find any statistical differ-
ences between the root measures of M, M+, and A (see MRIsoil 
in Table 3) and also observed a high similarity of the RSAs 
derived by the 3 reconstruction approaches. Nonetheless, we 
notice different reconstruction quality of the automated trac-
ings for the 2 MRI datasets. These differences indicate that the 
performance of the algorithm still depends on the input quality 
of the segmented images, which was also observed by [46], and 
is to be expected for automated approaches in general [14]. 
Although the U-Net segmentation considerably reduces noise 
and gaps, the gaps and noise remaining in the MRIsand data 
still lower the quality of the automated extraction. For the ana-
lyzed MRI data, the missing information had a stronger impact 
on the algorithm than on the human reconstructor, suggesting 
that automated gap closing remains a challenge even when 
noise is largely absent. The automated gap closing tends to con-
nect disconnected areas to the nearest neighboring roots, which 
leads to a substantial inflation of total root tips and derived 
topology. In contrast, human tracing decisions are based on a 
broader context of global information when it comes to deter-
mining which unconnected root segments are parts of the same 
root. Local branch orientation is one of the main factors to 
derive an educated guess during manual reconstruction but is 
currently not evaluated by the algorithm. Hence, including it 
as a factor in the automated gap closing procedure could greatly 
reduce the divergence between M, M+, and A reconstructions 
caused by differences in the interpretation of missing input 
data. Nevertheless, the automatic gap closing procedure 
increases the robustness of the calculated root measures. 
Although the connectivity is different, most root segments 
present in the data are recovered.

For both datasets, the topological information derived by 
the algorithm showed errors resulting from incorrect gap clos-
ing (i.e., inflation of root orders) and from general issues related 
to the logic applied to derive the topology. We suspect that 
implementing the use of time-series data will allow us to 
decrease these errors in future iterations of the algorithm. 
When the automated reconstruction is started with a young 
root system, fewer roots are present and RLD is usually small. 
Therefore, it is easier to distinguish between tap/primary roots 
and the few lateral roots that are present at that growth stage. 
Gap closing is also less challenging, as the number of potential 
connection candidates is lower. Subsequently, an MRI scan 
acquired at a later growth stage can be used to only track root 
growth that occurred since the initial measurement. By relying 
on information derived from earlier time points, the complexity 
of determining topology should be lowered. In addition, the 
use of time series could also reduce problems related to gaps 
in the root trajectory. As image quality varies over the course 
of an experiment, e.g., depending on the irrigation regime and 
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the resulting soil water contents, the visibility of roots and the 
number of gaps can be expected to fluctuate as well. The use of 
time-series data could reduce the impact of gaps. Once a root 
segment is detected, it remains permanently in the reconstruc-
tion, whether or not the root signal is present at another meas-
urement time. Such use of time-series data could also help 
reduce errors associated with merged root structures, which 
can result from roots coming into direct contact with each other 
at some point during root growth.

Despite the discussed differences between the reconstruc-
tions, the practical benefits of the automated work flow must 
be evaluated against current common practice. At the moment, 
data throughput of MRI images is severely hampered by the 
capabilities of available automated reconstruction methods. 
Even automated reconstructions derived from MRI images 
with comparatively high CNR often require manual addition 
or deletion of certain parts of the root systems (e.g., [20]), or 
manual determination of topology [58], to retrieve meaningful 
data. Since we evaluated 2 datasets that reflect the upper and 
lower boundaries of MRI image quality in terms of CNR and 
gaps, it is reasonable to assume that the performance of the 
automated work flow will gradually improve from the quality 
obtained for the MRIsand dataset to the quality obtained for the 
MRIsoil dataset. The automated work flow should therefore 
enable us to perform MRI experiments in a wider range of soil 
substrates, as well as at higher soil water contents, since it allows 
a more efficient use of low CNR data. However, further studies 
with a wider range of soil substrates are needed to validate this 
assumption. The results of this work do not necessarily transfer 
to other plant species. Certain species (i.e., maize), or specific 
data properties (i.e., missing crown root sections), require spe-
cialized adaptations of automated tracing tools to allow mean-
ingful reconstructions. Another example of such complications 
can be expected for bean root systems. Nodules attached to the 
root system make automated volume extraction more difficult. 
It is also to be expected that errors in the second step of the 
automatic reconstruction process will increase with root system 
size. Larger root systems tend to be more complex in their 
architecture, and the containers used in MRI experiments are 
rather small. As root growth is restricted by the container 
geometry, RLDs of larger root systems will inevitably increase. 
The smaller distances between individual roots and an increas-
ing number of roots in direct contact with each other will fur-
ther complicate automatic volume extraction, gap closing, and 
the successive derivation of root topology.

At the current state of automated reconstruction methods, 
visual inspection is essential to ensure qualitative standards are 
met. In cases of errors that are classified as critical for the 
intended use of the reconstruction, e.g., using the MRI root 
system in Fig. 5C for root water uptake simulations, we propose 
to use the automated reconstruction as scaffold and perform a 
manual correction. This approach should strike a balance 
between reconstruction quality and manual effort. Missing and 
false-positive roots can be easily corrected when using a system 
like our VR application, and topology can also be corrected.

We found that segmentation via 3D U-Net in super-resolution 
is a new and beneficial step stone in MRI root reconstruction 
pipelines that reduces manual reconstruction time, increases root 
recovery rates, and generally enables automated reconstruction 
of low-CNR data. In addition, it offers a way to standardize image 
preprocessing in manual reconstruction work flows, reducing 
the influence of different human reconstructors on the derived 

geometries. Hence, the U-Net segmentation should replace sim-
pler segmentation procedures such as global thresholds, which 
are currently applied in manual and automated reconstruction 
work flows. For the automated tracing algorithm we could show 
that U-Net segmentation and super-resolution enables a state-
of-the-art performance when deriving tracings for data of high 
and low CNR. However, topological decision making and gap 
closing of the tracing algorithm still need further improvements. 
In future studies, we aim to realize these improvements by fac-
toring in local branch orientation during gap closing and utiliz-
ing root order information of different growth stages contained 
in MRI time-series data. In cases where visual inspection of an 
automated reconstruction reveals an error that is deemed critical 
to the intended use, a hybrid work flow would be proposed. Here, 
the automated reconstruction of the segmented image can be 
used as a scaffold to which manual corrections are applied in an 
interactive VR environment. This hybrid work flow should allow 
us to process larger numbers of root images while maintaining 
optimal reconstruction quality. It will be investigated by us in 
further studies.
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