001009075 001__ 1009075
001009075 005__ 20230929112539.0
001009075 0247_ $$2doi$$a10.1111/pce.14655
001009075 0247_ $$2ISSN$$a0140-7791
001009075 0247_ $$2ISSN$$a1365-3040
001009075 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02623
001009075 0247_ $$2pmid$$a37376738
001009075 0247_ $$2WOS$$aWOS:001017555500001
001009075 037__ $$aFZJ-2023-02623
001009075 082__ $$a580
001009075 1001_ $$0P:(DE-Juel1)194449$$aBaca Cabrera, Juan C.$$b0$$eCorresponding author
001009075 245__ $$a18 O enrichment of sucrose and photosynthetic and nonphotosynthetic leaf water in a C 3 grass—atmospheric drivers and physiological relations
001009075 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2023
001009075 3367_ $$2DRIVER$$aarticle
001009075 3367_ $$2DataCite$$aOutput Types/Journal article
001009075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692963696_32101
001009075 3367_ $$2BibTeX$$aARTICLE
001009075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009075 3367_ $$00$$2EndNote$$aJournal Article
001009075 520__ $$aThe 18O enrichment (Δ18O) of leaf water affects the Δ18O of photosynthetic products such as sucrose, generating an isotopic archive of plant function and past climate. However, uncertainty remains as to whether leaf water compartmentation between photosynthetic and nonphotosynthetic tissue affects the relationship between Δ18O of bulk leaf water (Δ18OLW) and leaf sucrose (Δ18OSucrose). We grew Lolium perenne (a C3 grass) in mesocosm-scale, replicated experiments with daytime relative humidity (50% or 75%) and CO2 level (200, 400 or 800 μmol mol−1) as factors, and determined Δ18OLW, Δ18OSucrose and morphophysiological leaf parameters, including transpiration (Eleaf), stomatal conductance (gs) and mesophyll conductance to CO2 (gm). The Δ18O of photosynthetic medium water (Δ18OSSW) was estimated from Δ18OSucrose and the equilibrium fractionation between water and carbonyl groups (εbio). Δ18OSSW was well predicted by theoretical estimates of leaf water at the evaporative site (Δ18Oe) with adjustments that correlated with gas exchange parameters (gs or total conductance to CO2). Isotopic mass balance and published work indicated that nonphotosynthetic tissue water was a large fraction (~0.53) of bulk leaf water. Δ18OLW was a poor proxy for Δ18OSucrose, mainly due to opposite Δ18O responses of nonphotosynthetic tissue water (Δ18Onon-SSW) relative to Δ18OSSW, driven by atmospheric conditions.
001009075 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001009075 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009075 7001_ $$0P:(DE-HGF)0$$aHirl, Regina T.$$b1
001009075 7001_ $$0P:(DE-HGF)0$$aZhu, Jianjun$$b2
001009075 7001_ $$0P:(DE-HGF)0$$aSchäufele, Rudi$$b3
001009075 7001_ $$0P:(DE-HGF)0$$aOgée, Jérôme$$b4
001009075 7001_ $$0P:(DE-HGF)0$$aSchnyder, Hans$$b5
001009075 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.14655$$gp. pce.14655$$n9$$p2628-2648$$tPlant, cell & environment$$v46$$x0140-7791$$y2023
001009075 8564_ $$uhttps://juser.fz-juelich.de/record/1009075/files/Plant%20Cell%20Environment%20-%202023%20-%20Baca%20Cabrera.pdf$$yOpenAccess
001009075 909CO $$ooai:juser.fz-juelich.de:1009075$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009075 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194449$$aForschungszentrum Jülich$$b0$$kFZJ
001009075 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001009075 9141_ $$y2023
001009075 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-24
001009075 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-24
001009075 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-24$$wger
001009075 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-24
001009075 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001009075 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009075 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
001009075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2022$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001009075 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2022$$d2023-08-26
001009075 920__ $$lno
001009075 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001009075 980__ $$ajournal
001009075 980__ $$aVDB
001009075 980__ $$aUNRESTRICTED
001009075 980__ $$aI:(DE-Juel1)IBG-3-20101118
001009075 9801_ $$aFullTexts