001     1009089
005     20241016134452.0
024 7 _ |a 10.1002/smll.202302486
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02628
|2 datacite_doi
024 7 _ |a 37403278
|2 pmid
024 7 _ |a WOS:001022760900001
|2 WOS
037 _ _ |a FZJ-2023-02628
082 _ _ |a 620
100 1 _ |a Ghaur, Adjmal
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular‐Cling‐Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub‐Sufficient SEI Forming Additive Compounds
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704440102_25361
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Effective electrolyte compositions are of primary importance in raising the performance of lithium-ion batteries (LIBs). Recently, fluorinated cyclic phosphazenes in combination with fluoroethylene carbonate (FEC) have been introduced as promising electrolyte additives, which can decompose to form an effective dense, uniform, and thin protective layer on the surface of electrodes. Although the basic electrochemical aspects of cyclic fluorinated phosphazenes combined with FEC were introduced, it is still unclear how these two compounds interact constructively during operation. This study investigates the complementary effect of FEC and ethoxy(pentafluoro)cyclotriphosphazene (EtPFPN) in aprotic organic electrolyte in LiNi0.5Co0.2Mn0.3O ∥ SiOx/C full cells. The formation mechanism of lithium ethyl methyl carbonate (LEMC)-EtPFPN interphasial intermediate products and the reaction mechanism of lithium alkoxide with EtPFPN are proposed and supported by Density Functional Theory calculations. A novel property of FEC is also discussed here, called molecular-cling-effect (MCE). To the best knowledge, the MCE has not been reported in the literature, although FEC belongs to one of the most investigated electrolyte additives. The beneficial MCE of FEC toward the sub-sufficient solid-electrolyte interphase forming additive compound EtPFPN is investigated via gas chromatography-mass spectrometry, gas chromatography high resolution-accurate mass spectrometry, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, and scanning electron microscopy.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 1
536 _ _ |a Elektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)
|0 G:(BMBF)13XP5129
|c 13XP5129
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Pfeiffer, Felix
|0 P:(DE-Juel1)188450
|b 1
700 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 2
700 1 _ |a Peschel, Christoph
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dienwiebel, Iris
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Du, Leilei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Profanter, Laurin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Weiling, Matthias
|0 P:(DE-Juel1)190810
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Baghernejad, Masoud
|0 0000-0002-2754-6623
|b 11
|e Corresponding author
773 _ _ |a 10.1002/smll.202302486
|g p. 2302486
|0 PERI:(DE-600)2168935-0
|n 44
|p 2302486
|t Small
|v 19
|y 2023
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1009089
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188450
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)190810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21