001 | 1009089 | ||
005 | 20241016134452.0 | ||
024 | 7 | _ | |a 10.1002/smll.202302486 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-02628 |2 datacite_doi |
024 | 7 | _ | |a 37403278 |2 pmid |
024 | 7 | _ | |a WOS:001022760900001 |2 WOS |
037 | _ | _ | |a FZJ-2023-02628 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Ghaur, Adjmal |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Molecular‐Cling‐Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub‐Sufficient SEI Forming Additive Compounds |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704440102_25361 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Effective electrolyte compositions are of primary importance in raising the performance of lithium-ion batteries (LIBs). Recently, fluorinated cyclic phosphazenes in combination with fluoroethylene carbonate (FEC) have been introduced as promising electrolyte additives, which can decompose to form an effective dense, uniform, and thin protective layer on the surface of electrodes. Although the basic electrochemical aspects of cyclic fluorinated phosphazenes combined with FEC were introduced, it is still unclear how these two compounds interact constructively during operation. This study investigates the complementary effect of FEC and ethoxy(pentafluoro)cyclotriphosphazene (EtPFPN) in aprotic organic electrolyte in LiNi0.5Co0.2Mn0.3O ∥ SiOx/C full cells. The formation mechanism of lithium ethyl methyl carbonate (LEMC)-EtPFPN interphasial intermediate products and the reaction mechanism of lithium alkoxide with EtPFPN are proposed and supported by Density Functional Theory calculations. A novel property of FEC is also discussed here, called molecular-cling-effect (MCE). To the best knowledge, the MCE has not been reported in the literature, although FEC belongs to one of the most investigated electrolyte additives. The beneficial MCE of FEC toward the sub-sufficient solid-electrolyte interphase forming additive compound EtPFPN is investigated via gas chromatography-mass spectrometry, gas chromatography high resolution-accurate mass spectrometry, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, and scanning electron microscopy. |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 1 |
536 | _ | _ | |a Elektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129) |0 G:(BMBF)13XP5129 |c 13XP5129 |x 2 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Pfeiffer, Felix |0 P:(DE-Juel1)188450 |b 1 |
700 | 1 | _ | |a Diddens, Diddo |0 P:(DE-Juel1)169877 |b 2 |
700 | 1 | _ | |a Peschel, Christoph |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Dienwiebel, Iris |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Du, Leilei |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Profanter, Laurin |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Weiling, Matthias |0 P:(DE-Juel1)190810 |b 7 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 8 |e Corresponding author |
700 | 1 | _ | |a Placke, Tobias |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Nowak, Sascha |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Baghernejad, Masoud |0 0000-0002-2754-6623 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1002/smll.202302486 |g p. 2302486 |0 PERI:(DE-600)2168935-0 |n 44 |p 2302486 |t Small |v 19 |y 2023 |x 1613-6810 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009089/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1009089 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)188450 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169877 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)190810 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-15 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SMALL : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SMALL : 2022 |d 2023-10-25 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|