Enabling Hyperparameter-Tuning of AI Models for Healthcare
using the CoE RAISE Unique Al Framework for HPC

M. Riedel*", C. Barakat*", S. Fritsch’, M. Aach', J. Busch’, A. Lintermann’, A. Schuppert*,
S. Brynj6lfsson*, H. Neukirchen*, M. Book*

* School of Engineering and Natural ,Sciences, University of Iceland, Iceland
T Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Germany
¥ Joint Research Centre for Computational Biomedicine, University Hospital RWTH Aachen, Germany
c.barakat@fz-juelich.de, morris@hi.is, s.fritsch@fz-juelich.de, m.aach@fz-juelich.de, j.busch@fz-juelich.de,
a.lintermann @fz-juelich.de, schuppert@aices.rwth-aachen.de, sb@hi.is, helmut@hi.is, book @hi.is

Abstract—The European Center of Excellence in Exascale
Computing ''Research on AI- and Simulation-Based Engineering
at Exascale'" (CoE RAISE) is a project funded by the European
Commission. One of its central goals is to develop a Unique Al
Framework (UAIF) that simplifies the development of AI models
on cutting-edge supercomputers. However, those supercomputers’
High-Performance Computing (HPC) environments require the
knowledge of many low-level modules that all need to work
together in different software versions (e.g., TensorFlow, Python,
NCCL, PyTorch) and various concrete supercomputer hardware
deployments (e.g., JUWELS, JURECA, DEEP, JUPITER and
other EuroHPC Joint Undertaking HPC resources). This paper
will describe our analyzed complex challenges for AI researchers
using those environments and explain how to overcome them
using the UAIF. In addition, it will show the benefits of using
the UAIF hypertuning capability to make AI models better (i.e.,
better parameters) and faster by using HPC. Also, to demon-
strate that the UAIF approach is indeed simple, we describe
the adoption of selected UAIF building blocks by healthcare
applications. The examples include AI models for the Acute
Respiratory Distress Syndrome (ARDS). Finally, we highlight
other AI models of use cases that co-designed the UAIF.

Keywords—High-Performance Computing; Software Frame-
work; Machine Learning; Deep Learning; Quantum Computing

I. INTRODUCTION

Artificial Intelligence (Al) is a technology that is still rela-
tively new in exploiting High-Performance Computing (HPC)
systems for a wide variety of application domains compared
to traditional simulation sciences using numerical methods
based on known physical laws. Therefore, the European Cen-
tre of Excellence - Research on Al- and Simulation-Based
Engineering at Exascale (CoE RAISE)! develops a Unique
Al Framework (UAIF) to provide seamless solutions for a
wide variety of complex AI applications. The timespan of

This work was performed in the Center of Excellence (CoE) Research on Al-
and Simulation-Based Engineering at Exascale (RAISE) receiving funding
from EU’s Horizon 2020 Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733. Icelandic HPC
National Competence Center is funded by the EuroCC-1 projects that has
received funding from the EU HPC Joint Undertaking (JU) under grant
agreement No 951732. Parts of the work have been also supported by the
European Digital Innovation Hub (EDIH) of Iceland (EDIH-IS) funded in
parts by the Digital Europe Programme. Finally, parts of this work were
performed in the SMITH Project receiving funding from the German Federal
Ministry of Education and Research.

! https://www.coe-raise.cu/

CoE RAISE is from 2020 until the end of 2023 whereby
several EuroHPC JU National Competence Centers (NCCs)
have already agreed to maintain the UAIF beyond its project
lifetime. Several NCCs (e.g., Germany, Iceland) use parts of
UAIF already with different use cases while we highlight
one particular use case in this paper. The UAIF aims at the
convergence of HPC and innovative Al techniques making it
easier for Al researchers to make use of cutting-edge hardware
infrastructures. In addition to HPC hardware infrastructures,
a seamlessly usable and versatile Software Infrastructure is
critical for accelerating convergence through new Al toolsets
that are ready to scale for enormous quantities of datasets.
CoE RAISE considers Al requirements of Computing-driven
Use Cases using numerical methods based on known physical
laws. Use case examples include AI used in Computational
Fluid Dynamics (CFD) problems (i.e., wind wheels, turbu-
lence, hydrogen research, coating, etc.). CoE RAISE also
addresses Al requirements of Data-driven Use Cases with
large datasets of measurement devices. Use case examples
include AI used in additive manufacturing (i.e., 3D printing
quality assurance), dataset analysis from the Large Hadron
Collider (LHC) at CERN, and remote sensing data analysis.
The UAIF methodologies are co-designed by the above use
cases to ensure its usage by a wide variety of scientific and
engineering applications. The co-design activities leverage the
Interaction Room Methodology (1, 2) using Mural Boards?.
HPC environments getting more complex with a mas-
sive increase in technology (e.g., hierarchical storage and
malleability) and heterogenity (e.g., different GPU vendors).
Domain users and Al researchers are often overwhelmed when
using HPC resources and cant focus on their specific domain
problem. For example, the high amount of Al packages on
various HPC machines in different versions and the vast
availability of different module environments? for those is hard
to understand. Healthcare experts such as those addressed in
this paper are overwhelmed with these low-level environments
and demand a lower barrier to use HPC/AI methods such as
hyperparameter optimization (HPO) of Al models.

2Mural Boards https://mural.co
3https://modules.sourceforge.net/

This paper provides a comprehensive overview of the UAIF
software layout design that addresses the challenge mentioned
above, including major updates since its last publication by
M. Riedel et al. (3). Its main contribution is to describe each
component of UAIF and the comprehensive application co-
design efforts of use cases over two years. One key component
of the UAIF that is used in many use cases is the use of HPO
tools. Therefore, we also show a short adoption example of the
UATF in healthcare leveraging this popular HPO component.
While more healthcare-related Al models leverage HPC as
shown in (4), this paper focuses particularly on the adoption
of the HPO through the CoE RAISE UAIF.

The remainder of this paper is structured as follows. Section
1 starts with the introduction to CoE RAISE and the approach
of co-designing the UAIF with distinct engineering and scien-
tific use cases. A review of related work is given in Section
2, while Section 3 describes in detail the main contribution of
this paper that is the result of the CoE RAISE UAIF co-design
process. Section 4 then described one adoption of the UAIF
components by use cases that were not involved in the original
co-design process with a special emphasis on hyperparameter
tuning. The paper ends with some concluding remarks.

II. RELATED WORK

Despite the fact that the HPC environments are getting more
complex for domain-specific researchers, there is quite a his-
tory of tools and platforms that make it easier for researchers
to access HPC resources. One example is a HPC-driven Grid
middleware Uniform Interface to Computing Resources (UNI-
CORE)* (5). It offers a ready-to-run system including client
and server software that makes HPC resources available in a
seamless and secure way. In contrast to the UAIF, UNICORE
is not focused on a streamlined set of components for Al
on HPC resources. UNICORE is much more general and
operates basically one level above the module environments
and schedulers providing REST APIs or GUIs.

Other similar ideas of a framework or collection of tools
are existing in the commercial space from key vendors. One
example is the Intel one API HPC Tools for Developers. These
tools enable developers to build, analyze, optimize, and scale
HPC applications across multiple types of architectures more
easily using the Intel oneAPI Base Toolkit and Intel oneAPI
HPC Toolkit. The tools include approaches such as state-of-
the-art techniques in vectorization, multithreading, multinode
parallelization, and memory optimization so that one can
more easily build software that is HPC-ready. In contrast to
UAIF, these tools are not fully open source and the overall
design of the oneAPI is not focused on HPC at Exascale
but more general use by HPC applications. For the sake
of completeness, several solutions also exist in Clouds like
in Amazon Web Services (AWS) with SageMaker®. Those
services do not work on EuroHPC JU nor EU HPC systems.

4https://www.unicore.eu/

5 https://www.intel.com/content/www/us/en/high-performance-computing/hpc-software-
and-programming.html

6https://aws.amazon,com/sagemaker/

III. COE RAISE UAIF C0-DESIGN LAYOUT RESULTS

This section provides a comprehensive overview of the
framework software layout after the final co-design phase of
CoE RAISE, including major updates since the last publication
by Riedel et al. in (3). It briefly describes each component of
the framework. Fig. 1 includes several components that are not
directly under the control of CoE RAISE, but are identified
as important dependencies for the UAIF running on HPC
systems. For releases of a wide variety of UAIF components,
we refer to the CoE RAISE Web page.

A. Applications

The application layer contains different use cases that
contributed to the co-design of the Unique AI Framework
(UAIF), but also initiatives that might adopt the UAIF. In
Fig. 1, the large red arrow represents the co-design activities
that influence the reference architecture components. The large
green arrows represent the benefits and adoption potential for
external project activities in the larger HPC ecosystem.

Component (A) in Fig. 1 represents the co-design efforts of
the UAIF based on compute- and data-intensive use cases’.
Hence, several different use case types contributed to bench-
marking and proof of scalability of components of the UAIF
on various HPC systems. During the project, and especially
in the last few months, a clear picture is provided of what
components are relevant for the UAIF.

Also, a wide variety of CoEs® have been funded in different
domain-specific areas providing use cases that leverage sim-
ulation sciences or AI/HPC methods to utilize the emerging
Exascale computing. As shown in Fig. 1 (B), UAIF adoption
is recommended to CoEs as a way to prevent Al developers
in domain-specific sciences from wasting a lot of effort in
configuring the correct Al setup on HPC.

In addition, National Competence Centers (NCCs) has been
created under the EuroCC-1 and EuroCC-2 project umbrella
to enable industry and Small and Medium Enterprises (SMEs)
to leverage HPC resources of EuroHPC®. Component (C) of
Fig. 1 represent adoptions of the UAIF by NCCs and the
significant potential to governmental, academic, industry, and
SME partners to speed-up and scale-up their applications.

Finally, Digital Twins (DTs) and their workflows using
HPC, e.g., in the Destination Earth!'® or Inter-Twin!! projects,
are becoming important for HPC users in Europe. Component
(D) has been added to Fig. 1 to represent the processing-
intensive applications of DTs that are also highly relevant
for CoE RAISE, either the DTs adopting parts of UAIF
components or including new use cases in CoE RAISE.

B. Reference Architecture Elements
This section describes the reference architecture compo-
nents of the UAIF for Exascale HPC/AI methods, which are

7CoE RAISE Use Cases https://www.coe-raise.eu/use-cases

8EU HPC Centres of Excellence https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
9EuroHPC JU HPC Systems https://eurohpc-ju.europa.eu/about/our-supercomputers_en
10Degtination Earth https://digital-strategy.ec.europa.eu/en/policies/destination-earth
UnterTwin https://www.intertwin.eu

pr g-
(. Compute- & Data-Intensive CoE RAISE Use Cases] &Homain»speciﬁc CoE Use Cases i 4= NCC & Industrial Use Cases | | & Digital Twins Use Cases i"t(?HSi_Ve
A B) C) D PP ons
— x ; ~ .
co-design inputs ‘ adoptions adoptions adoptions
Secure Shell Access (SSH) using batch 7% Interactive Jupyter notebooks with JupyterLab sharing |.E Application Workflows (e.g., Apache Airflow),
E submits to scale-up distributed training = of datasets & scripts for rapid DL model prototyping k A including task pre- & post data processing Reference
- S 7 . Architecture
¥ of
LAMEC API to specify models in ONNX format LAMEC API to share & enable re-use of Al models with i OpenML Community I ClearML MLOps COE‘ RAISE
1)2lso enabling re-usability of existing Al models I community platforms & industry tools & datasets J Platform & Pipelines g latform & Models f"’"q"e A;(
}) Té
= 1 for Exascale
- - = HPC & Al
LAMEC API Facade pattern LAMEC API Batch script repository LAMEC API generates HPC script modules, Open HPC/AI Job Script Methods
@ encapsulates use case instances m & scalability-proven Al frameworks M Al library setups & automated testing B :\,‘ Generator Web Page(s)
); =):):
""" ¥
rj‘ Basic Science & Al @ /-, TensorFlow & PyTorch ._ . Horovod / PyTorch-DDP / DeepSpeed RAY oo Hyperparameter Tuner software
G ‘P libraries (NumPy, etc.) 3 (& DALI Data Loader) € Distributed Deep learning tools e Ray Tune, Optuna, Deep Hyper || jnfrastructure
)] I))
a2
J ___________ 1 ___________ - === — 1 ; adoptions
= . =~ ;
Modular ® EU
Prototype f EuroHPCJU
proto VP pC Apptainer ‘Hosﬁn e B uvi @ veca [rarouna [Deucation| o
ystems Container 8 Syst
JSL‘J’\S;/EE’L“S TA] Environment| ALK B LeonarDO [MELUXINA [B DISCOVERER ystems
. Modular HPC ’ Rudens hardware
System DEEP wWaved S— infrastructure
CTE-ARM -Wave Quantum Annealing System g VSC HPC
o ‘ @ o s, e | >
| N Quantum SVM Container M Aachen
CTE-AMD : >\ (SVR) Python Code 'Al Environment are Exascale ’
HPC System e Nostrum System) Systems

Figure 1. Application co-design result creating a unique

listed in Fig. 1 in the second layer. As shown in Fig. 1
(E), the first element includes the use of the Secure Shell
(SSH) protocol. Principally, as a means to remotely log into
HPC systems and submit batch scheduler scripts, e.g., via the
Simple Linux Utility for Resource Management (SLURM)
(6) tool, it remains one of the integral access methods for
HPC applications. Also, Al researchers frequently require
interactive access to HPC systems to facilitate quick and
rapid prototyping of Machine Learning (ML) and DL models.
Component (F) in Fig. 1 addresses this need in the UAIF by
offering Jupyter notebooks and JupyterLabs!2. The component
(G) in Fig. 1 is a new addition to the UAIF and supports
application workflows and workflow automation, including
task pre- and post- data processing capabilities. The UAIF
recommends the Apache Airflow!? tool that is a platform to
programmatically create, schedule, and monitor workflows.

As shown in Fig. 1 (H), a key component of the over-
all UAIF Load AI Modules, Environments, and Containers
(LAMEC) API is the fast portability between different DL
frameworks and reproducibility achieved by using the standard
Open Neural Network Exchange (ONNX). The implemen-
tation of the overall UAIF LAMEC API using ONNX is
still a work in progress. Another element of the overall
UAIF LAMEC API shown in Fig. 1 is component (I), which
represents a seamless integration with other tools. The goal
is to use the LAMEC API to share and re-use existing Al
models with community platforms (see below), industry tools,
datasets, and to enable Transfer Learning (TL). While initial
discussions with community platforms have taken place, the
implementation of the overall UAIF LAMEC API integration
and provisioning of Al models is still work in progress.

IzF’rojecl Jupyter https://jupyter.org/
13Apache Airflow https://airflow.apache.org/

Al software framework (UAIF) for HPC towards Exascale.

OpenML!'* is an open community platform for sharing
datasets, algorithms, models, and experiments using a wide
variety of traditional ML approaches. One ansatz to enlarge
the user community of UAIF is to integrate its components into
the OpenML platform such that experiments can be also run
on cutting-edge HPC systems. Hence, component (J) in Fig.
1 represents how this community might leverage the LAMEC
API integration components. On the other hand, ClearML!?
is an ML Operations (MLOps) platform that can be used to
develop, orchestrate, and automate ML workflows at scale.
CoE RAISE provides one installation of ClearML for its
internal and external users. Hence, another approach to enlarge
the user community of UAIF is to integrate components into
MLOps platforms such as ClearML that are often used in
the industry such that its tasks can be also run on cutting-
edge HPC systems. Hence, the component (K) in Fig. 1
represents how this community might leverage the LAMEC
API components through integration with MLOps platforms.

To map the abstract specifications of software and hardware
needs by Al researchers to specific software and hardware
HPC infrastructure elements, a facade pattern is used by the
UAIF LAMEC API general design. Hence, as represented by
component (L) in Fig. 1, the UAIF design employs an abstract
wrapper functionality that maps the abstract specifications
from users to specific software and hardware configurations.
The LAMEC API core is split into the two following elements.
The first core element is a batch script repository and the
second is an API using this repository to generate new batch
script elements, and both are described below. Thus the first
core element of the UAIF LAMEC API is a batch script
repository. It consists of batch scripts for specific HPC systems

I4OpenML https://www.openml.org/
5 ClearML https://clear.ml/

with a correct setup of modules needed for using specific UAIF
Al tools As described above and represented by component
(M) in Fig. 1, one idea is to use this repository with the UAIF
LAMEC API as follows with the second core below. But
it quickly becomes clear that the repository in itself is also
a great resource for AI/HPC researchers that already know
how to deal with changing HPC modules in batch scripts.
The second core element of the UAIF LAMEC API, which is
represented by component (N) in Fig. 1, is using the above-
mentioned repository to generate new batch script segments.
This lowers the barrier for entry to leveraging HPC systems
for Al researchers that may not have much experience working
with modules in HPC environments, as well as saving valuable
time through automation for experienced users. Additional
components beyond verified site Al modules and libraries,
such as Al model scripts or datasets for training and inference,
are planned for later addition (although these are usually
elements of a job script that inexperienced Al researchers do
not find challenging). Maintenance of the job script repository
is needed to keep it up-to-date, but that is effort is lower than
letting all users find the right modules themselves.

Finally, the open HPC/AI job script generator web page(s)
shown as component (O) in Fig. 1 also uses the implemen-
tation of the UAIF LAMEC API. This concept is derived
from existing job script generators available at the Swiss
National Supercomputing Centre (CSCS)'® or the National
Energy Research Scientific Computing Center (NERSC)!”,
where the difference to these existing tools lies in the use
of UAIF Al toolsets.

C. Software Infrastructure

The software infrastructure layer components (P) — (S),
which are depicted in Fig. 1. are presented in this section.
Despite the increase of DL tools, and their uptake in the Al
communities, there remains a core of basic science libraries
heavily used by CoE RAISE communities. Examples are
NumPy!'® and scikit-learn!®. In addition, the building block (P)
in Fig. 1 of the UAIF also includes simulation science codes,
e.g., those using numerical methods based on known physical
laws and that have the potential to benefit from coupling to Al
models. Since CoE RAISE focuses on Al models, the various
relevant simulation science codes have been kept out of the
UAIF layout. As shown in Fig. 1 (Q), the UAIF recommends
the use of PyTorch?® and TensorFlow?!. CoE RAISE has
tested their scalability in depth using various applications.
NVIDIA Data Loading Library (DALI)?? further increases the
performance of PyTorch and TensorFlow. This inclusion is
represented by component (Q) in Fig. 1 in parenthesis due
to the proprietary nature with NVIDIA GPUs. CoE RAISE
investigates still other GPU vendors such as Advanced Micro

16¢scs job script generator https://user.cscs.ch/access/running/jobscript_generator/
17"NERSC job script generator https://my.nersc.gov/script_generator.php

18NumPy https://numpy.org/

9gcikit-learn https://scikit-learn.org/stable/

20PyTorch https://pytorch.org/

21 TensorFlow https://www.tensorflow.org/

22DALI https://developer.nvidia.com/dali

Devices (AMD). Component (R) in Fig. 1 outlines three
supported tools used for accelerating distributed AI model
training by leveraging the large number of GPUs available at
HPC sites today. PyTorch-Distributed Data Parallel (DDP)??
and Horovod?* are included in the UAIF software layout. More
recently, the component also added DeepSpeed. One of the
most successful aspects of the current adoptions of the UAIF
are Hyperparameter Optimization (HPO) tools represented by
component (S) in Fig. 1. The most adopted component is Ray
Tune tool®®, and other UAIF components in that context are
Optuna®® and DeepHyper?’. This paper describes more about
the adoption of RayTune in the later adoption section.

D. Hardware Infrastructure

The hardware infrastructure layer components (T) — (Y) de-
picted in Fig. 1 are presented in this section. The benchmark-
ing and porting activities of Coe RAISE have been performed
on a number of interesting prototype HPC systems that feature
new and emerging technologies. The Dynamical Exascale
Entry Platform (DEEP)?® system has been used to experiment
with the Modular Supercomputing Architecture (MSA) (7, 8)
type of HPC architecture. This component (T) in Fig. 1 also
includes two new prototype systems, the Advanced Reduced
Instruction Set Computer Machine (ARM)-based CTE-ARM
and CTE-AMD, hosted at the Barcelona Supercomputing
Centre (BSC) in Spain. The CTE-ARM? is a supercom-
puter based on 192 A64FX ARM processors, with a Linux
Operating System (OS) and an Tofu interconnect network
(6.8GB/s). CTE-AMD? is a cluster based on AMD EPYC
processors, with a Linux OS and an Infiniband interconnection
network. It includes two AMD MI50 GPUs per node. Quantum
Computing (QC) is gaining momentum as the EuroHPC JU
recently funded, together with national contributions, several
QC systems 3!. Multiple use case applications (9, 10) have suc-
cessfully engaged in QC by utilizing the D-Wave QA system
available via the Juelich UNified Infrastructure for Quantum
computing (JUNIQ)?? at JSC in Germany. As represented by
component (U) in Fig. 1, the quantum AI models implemented
were Support Vector Machines (SVMs). They were used for
regression tasks via Support Vector Regression (SVR).

The MSA-based HPC system JUWELS is massively used
for co-designing the UAIF and performing necessary speed-
up and scaling benchmarks of its components, see component

23PyTorch Distributed Data Parallel https://pytorch.org/tutorials/beginner/dist_overview.html

Z4Horovod https://github.com/horovod/horovod

25 Ray Tune https://www.ray.io/ray-tunel

26Optuna https://optuna.org/l

z DeepHyper https://deephyper.readthedocs.io/en/latest/1

28DEEP Prototype HPC System hosted by JSC
https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system

29CTE-ARM HPC System
https://www.bsc.es/innovation-and-services/technical-information-cte-arm

30CTE-AMD HPC System
https://www.bsc.es/innovation-and-services/technical-information-cte-amd

31 EuroHPC JU Quantum Computers
https://eurohpc-ju.europa.eu/selection-six-sites-host-first-european-quantum-
computers-2022-10-04_en

325UNIQ
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/junig-facility

(V) in Fig. 1. It is an ideal HPC system for Al workloads as
described by Kesselheim et al. in (11). Container technologies
are an important tool within larger AI communities to facilitate
porting of applications and datasets between systems. One
example is shown as component (W) in Fig. 1, where the
porting operation of a containerized application from JUWELS
at JSC to the MARE NOSTRUM 4 system at BSC is shown.
This transparent deployment of containerized code is made
possible by the support of Apptainer®? (previously named Sin-
gularity) available at both sites (e.g., see container runtime on
JUWELS?*). Initial test have been performed with containers
on HPC platforms at scale, but more application use cases are
still work in progress. This component of the UAIF is crucial
to support industry applications that have not used HPC before.

Component (X) in Fig. 1 covers the EuroHPC JU hosting
sites® that may adopt the UAIF. Several European HPC
systems contributed to co-design with applications to the UAIF
design. It is the goal of the UAIF developer community to
support many EuroHPC JU systems. Initial discussions with
some of these sites have been started by CoE RAISE partners
to encourage the adoption of the UAIF. They reveal however
that many of the components of the UAIF are already partly
adopted by EuroHPC JU hosting sites. The broader adoption
strategy is in its initial stages, while components such as the
LAMEC API are considered to be further developed adding
more EuroHPC JU systems support over time. One highlight
of the adoption will be the integration to the first European
Exascale system JUPITER, which will be installed in 2024.

It is observed that new users of the UAIF are often starting
using regional or university-level systems before scaling up to
larger systems. Component (Y) in Fig. 1 contains examples
such as the university-level systems Rudens’’ of the Riga
Technical University (RTU), or the HPC systems of Rheinisch-
Westilische Technische Hochschule Aachen - RWTH Aachen
University (RWTH)SS. These sites are in the process of
adopting parts of the UAIF framework through users in CoE
RAISE. Another example are Belgium regional HPC systems
such as the Vlaams Supercomputer Centre (VSC)*° that are
in use by CoE RAISE. There is a wide variety of other
HPC systems, such as industrial systems in Iceland (e.g.,
Responsible Compute*®) that are not shown in Fig. 1 (Y),
but are in progress to adopt elements of the UAIF.

IV. FRAMEWORK ADOPTION EXAMPLE IN HEALTHCARE

Critically ill patients who require treatment on an intensive
care unit (ICU) in hospitals are at high risk of developing

33Apptainer https://apptainer.org/

34JUWELS Container Runtime
https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html

35EuroHPC JU Hosting Sites https://eurohpc-ju.europa.eu/about/our-supercomputers_en

36Path to JUPITER
https://www.fz-juelich.de/en/ias/jsc/news/news-items/news-flashes/2023/path-to-jupiter

3TRudens HPC System
https://www.rtu.lv/en/research/science-and-innovation-centre/scientific-equipment-
unit/hpc-center

38RWTH Aachen University HPC Systems
https://help.itc.rwth-aachen.de/en/service/rhrafjjutttf/

vsc HrC Systems https://www.vscentrum.be/

4052Resp0nsible Compute https://responsiblecompute.com/

respiratory diseases. Therefore, the Simulation and Data Lab
(SDL) Health and Medicine*! of the Icelandic National Com-
petence Center (NCC) for HPC and Al performs research in
that area with a special emphasis on leveraging cutting-edge
HPC systems. One of the main research areas of the SDL, in
cooperation with the Smart Medical Information Technology
for Healthcare (SMITH)*? project, is Acute Respiratory Dis-
tress Syndrome (ARDS), a condition that was first described
by Ashbaugh et al. (12) and which has a high mortality rate
among affected ICU patients due to its heterogeneity (13).

This section describes short insights on the evolution of
using HPC for that research based on earlier work by C.
Barakat in (4) with an emphasis on adopting the UAIF for
HPO (i.e., component S in Fig. 1). More recently, the SDL
Health and Medicine developed and improved a deep learning-
based surrogate model of one tool for modeling ARDS onset in
a virtual patient called the Nottingham Physiology Simulator
(NPS) (14). The model development process takes advantage
of current ML and data analysis techniques, as well as efficient
HPO methods using the UAIF deployment of the DEEP
MSA system at JSC (i.e., component T in Fig. 1). Also,
this healthcare use case adopts the basic science libraries
like NumPy (i.e., component P in Fig. 1) and DL tools with
distributed training (i.e., component Q and R in Fig. 1).

As shown in Fig. 1 (S), the concrete HPO tool used is
Ray Tune (15), which in turn employs different scheduling
algorithms in order to simplify the task of finding the op-
timal hyperparameters for training the final ARDS model.
DL model hyperparameters are the variables that affect the
way in which a model is built and its training process, and
can be altered either through a process of trial and error, or
automatically using optimization algorithms. The schedulers
used by Ray Tune in the optimization process are HyperBand,
Asynchronous HyperBand, Population-Based Training (PBT),
and the default First-In, First-Out (FIFO). The whole process
of finding hyperparameters and using the aforementioned
schedulers and algorithms are computationally expensive and
thus HPC is required to perform it. Medical experts in the
SDL are not experts in HPC and thus leverage the seamless
access of HPO tools on HPC via UAIF components such as
Jupyter (i.e., Fig. 1 F) and the LAMEC API (i.e., Fig. 1 N).

In order to achieve results, these algorithms distribute the
tuning task over the available HPC resources and may interfere
with the process by introducing perturbations, or by shutting
down under-performing tasks. The comparison of the different
algorithms is enabled to highlight the most efficient in terms
of resource use and accuracy of ARDS model results. Figure
2 showcases the performance of the different schedulers. It is
clear where the most efficient schedulers, namely HyperBand
(Figure 2b) and Asynchronous HyperBand (Figure 2c), begin
stopping trials that seem to underperform, thereby reducing
unnecessary resource use. On the other hand, PBT (Figure
2d)consumes the most resources, but does so while intro-

41 https://ihpc.is/simulation-and-data-lab-health-and-medicine/
42https://www.smit}Lcare/en/

(a) (b)

Figure 2. Mean Absolute Error of the ARDS model
hyperparameter tuning process using different schedulers.

ducing perturbations to the tuning process, through which
more insight into the best parameter combination could be
achieved. The tuner is therefore adaptable to different system
architectures, where researchers can choose the approach that
best suits the available hardware. The UAIF and HPO tools
are used to tune parameters like the learning rate, the batch
size, the dropout rate, the loss function, and the presence of an
intermediate fully-connected layer before the output layer in
the network architecture. While concrete medical results are
out of scope of this paper, we conclude that the results have
been not only faster achieved with UAIF and HPC speed-ups,
but also enabled better AI model accuracies through HPO.

V. CONCLUSION

The implementation process of the UAIF goes forward as
planned with respect to scalability tests and benchmarking
of UAIF components, but also with the implementation and
design of its LAMEC API to make it easier for non-technical
users to adopt it. We conclude that the co-design use cases
of CoE RAISE for the UAIF helped to be able to adopt
the UAIF in other scientific or engineering domains such as
healthcare. For the mentioned healthcare use case application
of UAIF in ARDS research, the UAIF components enabled
the researchers to create better Al models faster than before.
While there are many benefits, one drawback of the framework
is its maintenance and keeping the repository of job scripts
up-to-date which requires some development efforts. Initial
discussions with partners in CoE RAISE and NCCs reveal
that many want to contribute to an open-source solution with
development efforts that keeps the UAIF alive even beyond
project lifetime. There is work to be done on the broader
deployment of the UAIF across EuroHPC JU hosting sites

and other EU HPC resources. Also the adoption of the UAIF
in EuroCC NCC industrial use cases, other CoEs, and selected
Digitial Twins is work in progress.

REFERENCES

[1] Book, M. et al, “Facilitating collaboration in high-performance
computing projects with an interaction room,” in Proceedings
of the 4th ACM SIGPLAN International Workshop on Software
Engineering for Parallel Systems, 2017, pp. 46—47.

[2] Book, M. et al, “Facilitating collaboration in machine learning
and high-performance computing projects with an interaction
room,” in 2022 IEEE 18th International Conference on e-
Science (e-Science). IEEE, 2022, pp. 529-538.

[3] Riedel, M. et al, ‘“Practice and experience using high per-
formance computing and quantum computing to speed-up data
science methods in scientific applications,” in 2022 45th Jubilee
International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 2022, pp. 281-286.

[4] Barakat, C. et al, “Lessons learned on using high-performance
computing and data science methods towards understanding the
acute respiratory distress syndrome (ards),” in 2022 45th Jubilee
International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 2022, pp. 368-373.

[5] Streit, A. et al, “Unicore 6—recent and future advancements,”
Annals of Telecommunications-annales des Télécommunica-
tions, vol. 65, pp. 757-762, 2010.

[6] Yoo, A.B., Jette, M.A. and Grondona, M., “Slurm: Simple
linux utility for resource management,” in Job Scheduling
Strategies for Parallel Processing: 9th International Workshop,
JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper
9. Springer, 2003, pp. 44-60.

[7] Eicker, N. et al, “The deep project an alternative approach to
heterogeneous cluster-computing in the many-core era,” Con-
currency and computation: Practice and Experience, vol. 28, no.
8, pp. 2394-2411, 2016.

[8] Suarez, E., Eicker, N. and Lippert, T., “Modular supercomputing
architecture: from idea to production,” in Contemporary high
performance computing, pp. 223-255. CRC Press, 2019.

[9] Riedel, M., Cavallaro, G. and Benediktsson, J.A., “Practice and

experience in using parallel and scalable machine learning in

remote sensing from hpc over cloud to quantum computing,”
in 2021 IEEE International Geoscience and Remote Sensing

Symposium IGARSS. IEEE, 2021, pp. 1571-1574.

Pasetto, E. et al, “Quantum svr for chlorophyll concentration

estimation in water with remote sensing,” IEEE Geoscience and

Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

Kesselheim, S., Herten, A. et al, “Juwels booster—a super-

computer for large-scale ai research,” in High Performance

Computing: ISC High Performance Digital 2021 International

Workshops, Frankfurt am Main, Germany, June 24-July 2,

2021, Revised Selected Papers 36. Springer, 2021, pp. 453-468.

Ashbaugh, D. et al, “Acute respiratory distress in adults,” The

Lancet, vol. 290, no. 7511, pp. 319-323, 1967.

Barakat, C. et al, “An HPC-Driven Data Science Platform to

Speed-up Time Series Data Analysis of Patients with the Acute

Respiratory Distress Syndrome,” in 2021 44th International

Convention on Information, Communication and Electronic

Technology (MIPRO), Opatija, Croatia, pp. 311-316, IEEE.

Hardman, J., Bedforth, N. et al, “A physiology simulator:

validation of its respiratory components and its ability to predict

the patient’s response to changes in mechanical ventilation.,”

British journal of anaesthesia, vol. 81, no. 3, pp. 327-332, 1998.

[15] Moritz, P. et al, “Ray: A distributed framework for emerging

{AI} applications,” in 13th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 561-577.

(10]

(1]

(12]

(13]

(14]

