001009108 001__ 1009108
001009108 005__ 20230929112539.0
001009108 0247_ $$2doi$$a10.1038/s41586-023-06101-9
001009108 0247_ $$2ISSN$$a0028-0836
001009108 0247_ $$2ISSN$$a1476-4687
001009108 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02639
001009108 0247_ $$2pmid$$a37407680
001009108 0247_ $$2WOS$$aWOS:001024763800012
001009108 037__ $$aFZJ-2023-02639
001009108 082__ $$a500
001009108 1001_ $$0P:(DE-HGF)0$$aChoi, Young-Gwan$$b0
001009108 245__ $$aObservation of the orbital Hall effect in a light metal Ti
001009108 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2023
001009108 3367_ $$2DRIVER$$aarticle
001009108 3367_ $$2DataCite$$aOutput Types/Journal article
001009108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689340519_30993
001009108 3367_ $$2BibTeX$$aARTICLE
001009108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009108 3367_ $$00$$2EndNote$$aJournal Article
001009108 520__ $$aThe orbital Hall effect1 refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies2,3 predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect4,5,6,7 in many transition metals. Despite the growing circumstantial evidence8,9,10,11, its direct detection remains elusive. Here we report the magneto-optical observation of the orbital Hall effect in the light metal titanium (Ti). The Kerr rotation by the orbital magnetic moment accumulated at Ti surfaces owing to the orbital Hall current is measured, and the result agrees with theoretical calculations semi-quantitatively and is supported by the orbital torque12 measurement in Ti-based magnetic heterostructures. This result confirms the orbital Hall effect and indicates that the orbital angular momentum is an important dynamic degree of freedom in solids. Moreover, this calls for renewed studies of the orbital effect on other degrees of freedom such as spin2,3,13,14, valley15,16, phonon17,18,19 and magnon20,21 dynamics.
001009108 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001009108 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009108 7001_ $$0P:(DE-HGF)0$$aJo, Daegeun$$b1
001009108 7001_ $$0P:(DE-HGF)0$$aKo, Kyung-Hun$$b2
001009108 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b3$$ufzj
001009108 7001_ $$0P:(DE-HGF)0$$aKim, Kyung-Han$$b4
001009108 7001_ $$0P:(DE-HGF)0$$aPark, Hee Gyum$$b5
001009108 7001_ $$0P:(DE-HGF)0$$aKim, Changyoung$$b6
001009108 7001_ $$0P:(DE-HGF)0$$aMin, Byoung-Chul$$b7
001009108 7001_ $$0P:(DE-HGF)0$$aChoi, Gyung-Min$$b8$$eCorresponding author
001009108 7001_ $$0P:(DE-HGF)0$$aLee, Hyun-Woo$$b9$$eCorresponding author
001009108 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-023-06101-9$$gVol. 619, no. 7968, p. 52 - 56$$n7968$$p52 - 56$$tNature <London>$$v619$$x0028-0836$$y2023
001009108 8564_ $$uhttps://juser.fz-juelich.de/record/1009108/files/s41586-023-06101-9-1.pdf
001009108 8564_ $$uhttps://juser.fz-juelich.de/record/1009108/files/2109.14847.pdf$$yOpenAccess
001009108 909CO $$ooai:juser.fz-juelich.de:1009108$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Energy Science, Sungkyunkwan University, Suwon, Korea$$b0
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang, Korea$$b1
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Energy Science, Sungkyunkwan University, Suwon, Korea$$b2
001009108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b3$$kFZJ
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang, Korea$$b4
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics, Korea Institute of Science and Technology, Seoul, Korea$$b5
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Astronomy, Seoul National University, Seoul, Korea$$b6
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea$$b6
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Spintronics, Korea Institute of Science and Technology, Seoul, Korea$$b7
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Energy Science, Sungkyunkwan University, Suwon, Korea$$b8
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon, Korea$$b8
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, Pohang University of Science and Technology, Pohang, Korea$$b9
001009108 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Asia Pacific Center for Theoretical Physics, Pohang, Korea$$b9
001009108 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001009108 9141_ $$y2023
001009108 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2022-11-29
001009108 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-29
001009108 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-29
001009108 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-29
001009108 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2022-11-29$$wger
001009108 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2022-11-29
001009108 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2022$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001009108 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bNATURE : 2022$$d2023-08-29
001009108 920__ $$lyes
001009108 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001009108 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001009108 980__ $$ajournal
001009108 980__ $$aVDB
001009108 980__ $$aUNRESTRICTED
001009108 980__ $$aI:(DE-Juel1)PGI-1-20110106
001009108 980__ $$aI:(DE-Juel1)IAS-1-20090406
001009108 9801_ $$aFullTexts