001009125 001__ 1009125
001009125 005__ 20240711085648.0
001009125 0247_ $$2doi$$a10.1039/D3TA02927A
001009125 0247_ $$2ISSN$$a2050-7488
001009125 0247_ $$2ISSN$$a2050-7496
001009125 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02655
001009125 0247_ $$2WOS$$aWOS:001043383600001
001009125 037__ $$aFZJ-2023-02655
001009125 082__ $$a530
001009125 1001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz$$b0$$eCorresponding author$$ufzj
001009125 245__ $$aReversibility limitations of metal exsolution reactions in niobium and nickel co-doped strontium titanate
001009125 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2023
001009125 3367_ $$2DRIVER$$aarticle
001009125 3367_ $$2DataCite$$aOutput Types/Journal article
001009125 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692964312_1291
001009125 3367_ $$2BibTeX$$aARTICLE
001009125 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009125 3367_ $$00$$2EndNote$$aJournal Article
001009125 520__ $$aMetal exsolution reactions enable the preparation of metal-oxide nano-composites from oxide parent materials in a single thermal reduction step. In this process, reducible metals are released from the doped oxide and nucleate in the form of finely dispersed, supported nanoparticles. A reversible exsolution and re-dissolution reaction could provide an effective way to regenerate catalysts, where the surface structure and functionality dynamically adapt to the ambient gas environment. However, the reversibility of exsolution reactions is often limited. We investigate reversibility limitations in the niobium and nickel co-doped perovskite SrTi0.95−xNb0.05NixO3−δ with varying Ni doping concentrations between x = 0.005–0.1. Combined morphological, structural and chemical analyses of the material response upon consecutive thermal treatments in reducing and oxidizing environments reveal a non-correlated bulk and surface response of the material upon redox treatment. While the bulk structural changes are mostly reversible, no re-dissolution of the exsolved surface nanoparticles is detected for the investigated time–temperature window (T = 800 °C, t = 5 h for reduction and reoxidation, respectively). Instead, a modification in the nanoparticle distribution and an increased surface wetting of the support by the exsolved metal species are observed upon reoxidation of the nanoparticles.
001009125 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001009125 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009125 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b1
001009125 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b2
001009125 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
001009125 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert$$b4
001009125 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b5$$ufzj
001009125 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b6
001009125 7001_ $$0P:(DE-Juel1)164137$$aNemšák, Slavomír$$b7
001009125 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b8
001009125 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA02927A$$gp. 10.1039.D3TA02927A$$n33$$p17718-17727$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001009125 8564_ $$uhttps://juser.fz-juelich.de/record/1009125/files/d3ta02927a.pdf$$yOpenAccess
001009125 8767_ $$d2023-09-06$$eHybrid-OA$$jPublish and Read
001009125 909CO $$ooai:juser.fz-juelich.de:1009125$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b0$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b1$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b2$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b4$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b5$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b6$$kFZJ
001009125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b8$$kFZJ
001009125 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001009125 9141_ $$y2023
001009125 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009125 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009125 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009125 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001009125 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001009125 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
001009125 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
001009125 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009125 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001009125 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001009125 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001009125 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
001009125 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001009125 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x2
001009125 9801_ $$aFullTexts
001009125 980__ $$ajournal
001009125 980__ $$aVDB
001009125 980__ $$aUNRESTRICTED
001009125 980__ $$aI:(DE-Juel1)PGI-7-20110106
001009125 980__ $$aI:(DE-82)080009_20140620
001009125 980__ $$aI:(DE-Juel1)IEK-1-20101013
001009125 980__ $$aAPC
001009125 981__ $$aI:(DE-Juel1)IMD-2-20101013