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Gradient free optimization of neuroscience models at different scales with L2L
Motivation
Problem:

Neuroscience models have high number of degrees of freedom
Only specific parameter regions are of interest
Finding these regions efficiently requires development of complex
tools and strategies

Goal:
1 High throughput hyper-parameter optimization at scale using

Machine Learning
2 Parallelization on high performance computing systems (HPCs)
3 Handling of complex problems with arbitrary tools and algorithms

Learning to Learn (L2L) framework

Implements the concept of
meta-learning [1, 2]
Generalization on new data
sets via experience
Parameter space exploration
Variety of gradient-free
metaheuristics
Easily parallelizable on HPC
systems and applicable to
different scientific fields

NEST: Tuning large scale spiking networks
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Two loop parameter optimization scheme of spiking reservoir
Implemented in NEST [3] on HPC systems
Reservoir classifies digits
Ensemble Kalman filter (Enkf) optimizes weights of n individuals
Genetic algorithm optimizes hyper-parameters γγγ and ensemble size

Arbor: Single cell parameter optimization

Network simulations of morphologically-detailed neurons [4]
Built for modern, accelerated HPC using C++20 and Python
For a given model, i.e. morphology and assignment of ion
channels, find parameters to match empirically obtained voltage
traces
Working prototype for distributed optimization
Proof of concept for multi-instance optimization leveraging
Arbor’s GPU support → simultaneous evaluation of a large
population of individuals

The Virtual Brain (TVB) parameter sweeps
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TVB [5]: whole brain simulation using neural mass models and
detailed connectomes
Parameter fitting to match patient EEG/fMRI
TVB Python optimizee available
TVB CUDA multi-instance optimization (see figure)
Recommended usage of RateML to easily build TVB model

NetLogo-Nest: Ant colony optimization

Multi-agent simulation in NetLogo [6]
Ants (red, green) explore and forage for
food (green, brown leaves)
Drop pheromones (blue, white) for
communication
Steered by a Spiking Neural Network
Optimization of weights and delays
32 individuals optimized in parallel, 15 ants

L2L on :
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