001009245 001__ 1009245
001009245 005__ 20240712112857.0
001009245 0247_ $$2doi$$a10.1088/2632-072X/acc91f
001009245 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02706
001009245 0247_ $$2WOS$$aWOS:000974336100001
001009245 037__ $$aFZJ-2023-02706
001009245 041__ $$aEnglish
001009245 082__ $$a530
001009245 1001_ $$0P:(DE-Juel1)177965$$aHan, Chengyuan$$b0
001009245 245__ $$aFormation of trade networks by economies of scale and product differentiation
001009245 260__ $$aBristol$$bIOP Publ.$$c2023
001009245 3367_ $$2DRIVER$$aarticle
001009245 3367_ $$2DataCite$$aOutput Types/Journal article
001009245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692599127_19966
001009245 3367_ $$2BibTeX$$aARTICLE
001009245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009245 3367_ $$00$$2EndNote$$aJournal Article
001009245 520__ $$aUnderstanding the structure and formation of networks is a central topic in complexity science. Economic networks are formed by decisions of individual agents and thus not properly described by established random graph models. In this article, we establish a model for the emergence of trade networks that is based on rational decisions of individual agents. The model incorporates key drivers for the emergence of trade, comparative advantage and economic scale effects, but also the heterogeneity of agents and the transportation or transaction costs. Numerical simulations show three macroscopically different regimes of the emerging trade networks. Depending on the specific transportation costs and the heterogeneity of individual preferences, we find centralized production with a star-like trade network, distributed production with all-to-all trading or local production and no trade. Using methods from statistical mechanics, we provide an analytic theory of the transitions between these regimes and estimates for critical parameters values.
001009245 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001009245 536__ $$0G:(DE-JUEL1)BMBF-03EK3055B$$aCoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)$$cBMBF-03EK3055B$$x1
001009245 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
001009245 536__ $$0G:(DE-Ds200)HGF-ZT-I-0029$$aHGF-ZT-I-0029 - Helmholtz UQ: Uncertainty Quantification - from data to reliable knowledge (HGF-ZT-I-0029)$$cHGF-ZT-I-0029$$x3
001009245 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009245 7001_ $$00000-0001-8756-9918$$aSchröder, Malte$$b1
001009245 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2$$eCorresponding author
001009245 7001_ $$0P:(DE-Juel1)184784$$aBöttcher, Philipp C$$b3
001009245 773__ $$0PERI:(DE-600)3034619-8$$a10.1088/2632-072X/acc91f$$gVol. 4, no. 2, p. 025006 -$$n2$$p025006$$tJournal of physics / Complexity$$v4$$x2632-072X$$y2023
001009245 8564_ $$uhttps://juser.fz-juelich.de/record/1009245/files/Final%20Draft%20Post%20Referee.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001009245 8564_ $$uhttps://juser.fz-juelich.de/record/1009245/files/Han_2023_J._Phys._Complex._4_025006.pdf$$yRestricted$$zStatID:(DE-HGF)0599
001009245 909CO $$ooai:juser.fz-juelich.de:1009245$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
001009245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184784$$aForschungszentrum Jülich$$b3$$kFZJ
001009245 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001009245 9141_ $$y2023
001009245 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009245 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-COMPLEXITY : 2022$$d2023-08-23
001009245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001009245 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:01:43Z
001009245 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:01:43Z
001009245 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:01:43Z
001009245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001009245 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-23
001009245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001009245 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001009245 920__ $$lyes
001009245 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
001009245 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x1
001009245 9801_ $$aFullTexts
001009245 980__ $$ajournal
001009245 980__ $$aVDB
001009245 980__ $$aUNRESTRICTED
001009245 980__ $$aI:(DE-Juel1)IEK-STE-20101013
001009245 980__ $$aI:(DE-Juel1)IEK-10-20170217
001009245 981__ $$aI:(DE-Juel1)ICE-1-20170217