001     1009245
005     20240712112857.0
024 7 _ |a 10.1088/2632-072X/acc91f
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02706
|2 datacite_doi
024 7 _ |a WOS:000974336100001
|2 WOS
037 _ _ |a FZJ-2023-02706
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Han, Chengyuan
|0 P:(DE-Juel1)177965
|b 0
245 _ _ |a Formation of trade networks by economies of scale and product differentiation
260 _ _ |a Bristol
|c 2023
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692599127_19966
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the structure and formation of networks is a central topic in complexity science. Economic networks are formed by decisions of individual agents and thus not properly described by established random graph models. In this article, we establish a model for the emergence of trade networks that is based on rational decisions of individual agents. The model incorporates key drivers for the emergence of trade, comparative advantage and economic scale effects, but also the heterogeneity of agents and the transportation or transaction costs. Numerical simulations show three macroscopically different regimes of the emerging trade networks. Depending on the specific transportation costs and the heterogeneity of individual preferences, we find centralized production with a star-like trade network, distributed production with all-to-all trading or local production and no trade. Using methods from statistical mechanics, we provide an analytic theory of the transitions between these regimes and estimates for critical parameters values.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 1
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 2
536 _ _ |a HGF-ZT-I-0029 - Helmholtz UQ: Uncertainty Quantification - from data to reliable knowledge (HGF-ZT-I-0029)
|0 G:(DE-Ds200)HGF-ZT-I-0029
|c HGF-ZT-I-0029
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schröder, Malte
|0 0000-0001-8756-9918
|b 1
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 2
|e Corresponding author
700 1 _ |a Böttcher, Philipp C
|0 P:(DE-Juel1)184784
|b 3
773 _ _ |a 10.1088/2632-072X/acc91f
|g Vol. 4, no. 2, p. 025006 -
|0 PERI:(DE-600)3034619-8
|n 2
|p 025006
|t Journal of physics / Complexity
|v 4
|y 2023
|x 2632-072X
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1009245/files/Final%20Draft%20Post%20Referee.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/1009245/files/Han_2023_J._Phys._Complex._4_025006.pdf
909 C O |o oai:juser.fz-juelich.de:1009245
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162277
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184784
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-COMPLEXITY : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:01:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:01:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:01:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21