001009258 001__ 1009258
001009258 005__ 20231127201901.0
001009258 0247_ $$2doi$$a10.1038/s42003-023-05073-w
001009258 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02718
001009258 0247_ $$2pmid$$a37429937
001009258 0247_ $$2WOS$$aWOS:001025904900005
001009258 037__ $$aFZJ-2023-02718
001009258 082__ $$a570
001009258 1001_ $$0P:(DE-Juel1)190306$$aSasse, Leonard$$b0
001009258 245__ $$aIntermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity
001009258 260__ $$aLondon$$bSpringer Nature$$c2023
001009258 3367_ $$2DRIVER$$aarticle
001009258 3367_ $$2DataCite$$aOutput Types/Journal article
001009258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689928493_19748
001009258 3367_ $$2BibTeX$$aARTICLE
001009258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009258 3367_ $$00$$2EndNote$$aJournal Article
001009258 520__ $$aFunctional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
001009258 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001009258 588__ $$aDataset connected to DataCite
001009258 7001_ $$0P:(DE-Juel1)180372$$aLarabi, Daouia$$b1$$ufzj
001009258 7001_ $$0P:(DE-Juel1)188339$$aOmidvarnia, Amir$$b2
001009258 7001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b3
001009258 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4$$ufzj
001009258 7001_ $$0P:(DE-HGF)0$$aJocham, Gerhard$$b5
001009258 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6
001009258 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b7$$eCorresponding author
001009258 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-023-05073-w$$gVol. 6, no. 1, p. 705$$n1$$p705$$tCommunications biology$$v6$$x2399-3642$$y2023
001009258 8564_ $$uhttps://juser.fz-juelich.de/record/1009258/files/s42003-023-05073-w.pdf$$yOpenAccess
001009258 8767_ $$8SN-2023-00743-b$$92023-11-23$$d2023-11-27$$eAPC$$jZahlung erfolgt
001009258 909CO $$ooai:juser.fz-juelich.de:1009258$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery$$popenCost
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190306$$aForschungszentrum Jülich$$b0$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)190306$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b0
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)190306$$a Max Planck School of Cognition$$b0
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180372$$aForschungszentrum Jülich$$b1$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180372$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b1
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188339$$aForschungszentrum Jülich$$b2$$kFZJ
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b3$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178611$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b3
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b5
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b6
001009258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b7$$kFZJ
001009258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf$$b7
001009258 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001009258 9141_ $$y2023
001009258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001009258 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12
001009258 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001009258 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001009258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009258 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001009258 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009258 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:13:06Z
001009258 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:13:06Z
001009258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:13:06Z
001009258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN BIOL : 2022$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
001009258 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN BIOL : 2022$$d2023-10-27
001009258 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009258 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009258 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009258 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009258 920__ $$lyes
001009258 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001009258 9801_ $$aFullTexts
001009258 980__ $$ajournal
001009258 980__ $$aVDB
001009258 980__ $$aUNRESTRICTED
001009258 980__ $$aI:(DE-Juel1)INM-7-20090406
001009258 980__ $$aAPC