001     1009258
005     20231127201901.0
024 7 _ |a 10.1038/s42003-023-05073-w
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02718
|2 datacite_doi
024 7 _ |a 37429937
|2 pmid
024 7 _ |a WOS:001025904900005
|2 WOS
037 _ _ |a FZJ-2023-02718
082 _ _ |a 570
100 1 _ |a Sasse, Leonard
|0 P:(DE-Juel1)190306
|b 0
245 _ _ |a Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity
260 _ _ |a London
|c 2023
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689928493_19748
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Larabi, Daouia
|0 P:(DE-Juel1)180372
|b 1
|u fzj
700 1 _ |a Omidvarnia, Amir
|0 P:(DE-Juel1)188339
|b 2
700 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 3
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 4
|u fzj
700 1 _ |a Jocham, Gerhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 7
|e Corresponding author
773 _ _ |a 10.1038/s42003-023-05073-w
|g Vol. 6, no. 1, p. 705
|0 PERI:(DE-600)2919698-X
|n 1
|p 705
|t Communications biology
|v 6
|y 2023
|x 2399-3642
856 4 _ |u https://juser.fz-juelich.de/record/1009258/files/s42003-023-05073-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1009258
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190306
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190306
910 1 _ |a Max Planck School of Cognition
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180372
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)180372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188339
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178611
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172843
910 1 _ |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:13:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:13:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:13:06Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2022
|d 2023-10-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21