Home > Publications database > Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity > print |
001 | 1009258 | ||
005 | 20231127201901.0 | ||
024 | 7 | _ | |a 10.1038/s42003-023-05073-w |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-02718 |2 datacite_doi |
024 | 7 | _ | |a 37429937 |2 pmid |
024 | 7 | _ | |a WOS:001025904900005 |2 WOS |
037 | _ | _ | |a FZJ-2023-02718 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Sasse, Leonard |0 P:(DE-Juel1)190306 |b 0 |
245 | _ | _ | |a Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity |
260 | _ | _ | |a London |c 2023 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1689928493_19748 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Larabi, Daouia |0 P:(DE-Juel1)180372 |b 1 |u fzj |
700 | 1 | _ | |a Omidvarnia, Amir |0 P:(DE-Juel1)188339 |b 2 |
700 | 1 | _ | |a Jung, Kyesam |0 P:(DE-Juel1)178611 |b 3 |
700 | 1 | _ | |a Hoffstaedter, Felix |0 P:(DE-Juel1)131684 |b 4 |u fzj |
700 | 1 | _ | |a Jocham, Gerhard |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 6 |
700 | 1 | _ | |a Patil, Kaustubh R. |0 P:(DE-Juel1)172843 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1038/s42003-023-05073-w |g Vol. 6, no. 1, p. 705 |0 PERI:(DE-600)2919698-X |n 1 |p 705 |t Communications biology |v 6 |y 2023 |x 2399-3642 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009258/files/s42003-023-05073-w.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1009258 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a Max Planck School of Cognition |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190306 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180372 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)180372 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188339 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)178611 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)178611 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131684 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 6 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)172843 |
910 | 1 | _ | |a Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf |0 I:(DE-HGF)0 |b 7 |6 P:(DE-Juel1)172843 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-12 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-12 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:13:06Z |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN BIOL : 2022 |d 2023-10-27 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|