001009259 001__ 1009259
001009259 005__ 20240708132846.0
001009259 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2023.06.015
001009259 0247_ $$2ISSN$$a0955-2219
001009259 0247_ $$2ISSN$$a1873-619X
001009259 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02719
001009259 0247_ $$2WOS$$aWOS:001043588000001
001009259 037__ $$aFZJ-2023-02719
001009259 082__ $$a660
001009259 1001_ $$0P:(DE-Juel1)180786$$aSchwiers, Alexander$$b0$$eCorresponding author
001009259 245__ $$aInterdiffusion at electrochemical interfaces between yttria-stabilized zirconia and doped ceria
001009259 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001009259 3367_ $$2DRIVER$$aarticle
001009259 3367_ $$2DataCite$$aOutput Types/Journal article
001009259 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692877285_397
001009259 3367_ $$2BibTeX$$aARTICLE
001009259 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009259 3367_ $$00$$2EndNote$$aJournal Article
001009259 520__ $$aIntegration of doped ceria into fuel electrode-supported solid oxide cells is challenging due to high sintering temperatures leading to undesirable interdiffusion between the layers.We investigate the influence of the dopant in ceria X0.1Ce0.9O1.95 (10XDC, X = Y, Gd or Sm) on the interdiffusion with yttria-stabilized zirconia (8YSZ). Powder mixtures of 8YSZ and 10XDC were sintered at temperatures between 1000 and 1400 °C to quantify the phase formation. Interdiffusion in layered systems sintered at 1400 °C was investigated by SEM. Symmetrical Ni-10XDC cells with an 8YSZ electrolyte were analyzed using impedance spectroscopy. Despite small differences in the interdiffusion behavior, different dopants do not lead to significant changes in the cell impedance.Notably, the presence of NiO in the fuel electrode leads to enhanced interdiffusion kinetics of 10XDC with 8YSZ and the formation of porosity at the electrolyte interface. The detrimental influence of these microstructural changes on the electrode performance was investigated.
001009259 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001009259 536__ $$0G:(GEPRIS)275388933$$aDFG project 275388933 - Entwicklung verbesserter Anoden in oxidkeramischen Brennstoffzellen (SOFC) für die Verstromung von Synthesegas aus der thermochemischen Vergasung von Biomasse (275388933)$$c275388933$$x1
001009259 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x2
001009259 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009259 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b1
001009259 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
001009259 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b3$$ufzj
001009259 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2023.06.015$$gVol. 43, no. 14, p. 6189 - 6199$$n14$$p6189 - 6199$$tJournal of the European Ceramic Society$$v43$$x0955-2219$$y2023
001009259 8564_ $$uhttps://juser.fz-juelich.de/record/1009259/files/Interdiffusion%20at%20electrochemical%20interfaces%20between%208YSZ%20and%20doped%20ceria_final_preprint.pdf$$yPublished on 2023-06-08. Available in OpenAccess from 2025-06-08.
001009259 909CO $$ooai:juser.fz-juelich.de:1009259$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180786$$aForschungszentrum Jülich$$b0$$kFZJ
001009259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b1$$kFZJ
001009259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
001009259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b3$$kFZJ
001009259 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001009259 9141_ $$y2023
001009259 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001009259 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001009259 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001009259 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001009259 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001009259 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001009259 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001009259 9801_ $$aFullTexts
001009259 980__ $$ajournal
001009259 980__ $$aVDB
001009259 980__ $$aUNRESTRICTED
001009259 980__ $$aI:(DE-Juel1)IEK-1-20101013
001009259 981__ $$aI:(DE-Juel1)IMD-2-20101013