001009280 001__ 1009280
001009280 005__ 20240712100910.0
001009280 0247_ $$2doi$$a10.5194/acp-23-7901-2023
001009280 0247_ $$2ISSN$$a1680-7316
001009280 0247_ $$2ISSN$$a1680-7324
001009280 0247_ $$2WOS$$aWOS:001030413300001
001009280 037__ $$aFZJ-2023-02731
001009280 082__ $$a550
001009280 1001_ $$0P:(DE-Juel1)180866$$aRhode, Sebastian$$b0$$eCorresponding author
001009280 245__ $$aA mountain ridge model for quantifying oblique mountain wave propagation and distribution
001009280 260__ $$aKatlenburg-Lindau$$bEGU$$c2023
001009280 3367_ $$2DRIVER$$aarticle
001009280 3367_ $$2DataCite$$aOutput Types/Journal article
001009280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689751604_31084
001009280 3367_ $$2BibTeX$$aARTICLE
001009280 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009280 3367_ $$00$$2EndNote$$aJournal Article
001009280 520__ $$aFollowing the current understanding of gravity waves (GWs) and especially mountain waves (MWs), they have a high potential for horizontal propagation from their source. This horizontal propagation and therefore the transport of energy is usually not well represented in MW parameterizations of numerical weather prediction and general circulation models. In this study, we present a mountain wave model (MWM) for the quantification of horizontal propagation of orographic gravity waves. This model determines MW source locations from topography data and estimates MW parameters from a fit of idealized Gaussian-shaped mountains to the elevation. Propagation and refraction of these MWs in the atmosphere are modeled using the Gravity-wave Regional Or Global Ray Tracer (GROGRAT). Ray tracing of each MW individually allows for an estimation of momentum transport due to both vertical and horizontal propagation. The MWM is a capable tool for the analysis of MW propagation and global MW activity and can support the understanding of observations and improvement of MW parameterizations in GCMs. This study presents the model itself and gives validations of MW-induced temperature perturbations to ECMWF Integrated Forecast System (IFS) numerical weather prediction data and estimations of GW momentum flux (GWMF) compared to HIgh Resolution Dynamics Limb Sounder (HIRDLS) satellite observations. The MWM is capable of reproducing the general features and amplitudes of both of these data sets and, in addition, is used to explain some observational features by investigating MW parameters along their trajectories.
001009280 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001009280 536__ $$0G:(BMBF)01LG1905C$$aVerbundprojekt QUBICC: Rolle der mittleren Atmosphäre bezogen auf das Klima (ROMIC II) - Teilprojekt 3: Tropische Wellen aus Beobachtungen und Reanalysen (01LG1905C)$$c01LG1905C$$x1
001009280 536__ $$0G:(BMBF)01LG1907D$$aRolle der mittleren Atmosphäre bezogen auf das Klima (ROMIC-II) - Verbundprojekt WASCLIM - Teilprojekt 4: GLORIA Beobachtungen und Source Transfer Parametrisation (STP) (01LG1907D)$$c01LG1907D$$x2
001009280 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009280 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b1$$ufzj
001009280 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b2
001009280 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b3$$ufzj
001009280 7001_ $$0P:(DE-Juel1)169740$$aKrasauskas, Lukas$$b4
001009280 7001_ $$0P:(DE-HGF)0$$aBacmeister, Julio$$b5
001009280 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6
001009280 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-23-7901-2023$$gVol. 23, no. 14, p. 7901 - 7934$$n14$$p7901 - 7934$$tAtmospheric chemistry and physics$$v23$$x1680-7316$$y2023
001009280 8564_ $$uhttps://acp.copernicus.org/articles/23/7901/2023/
001009280 8564_ $$uhttps://juser.fz-juelich.de/record/1009280/files/Invoice_Helmholtz-PUC-2023-67.pdf
001009280 8564_ $$uhttps://juser.fz-juelich.de/record/1009280/files/accepted_manuscript_before_editor.pdf$$yRestricted
001009280 8564_ $$uhttps://juser.fz-juelich.de/record/1009280/files/acp-23-7901-2023.pdf$$yRestricted
001009280 8767_ $$8Helmholtz-PUC-2023-67$$92023-07-19$$a1200194919$$d2023-07-24$$eAPC$$jZahlung erfolgt
001009280 909CO $$ooai:juser.fz-juelich.de:1009280$$popenCost$$pOpenAPC$$pVDB
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180866$$aForschungszentrum Jülich$$b0$$kFZJ
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b1$$kFZJ
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b2$$kFZJ
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b3$$kFZJ
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169740$$aForschungszentrum Jülich$$b4$$kFZJ
001009280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
001009280 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001009280 9141_ $$y2023
001009280 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009280 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009280 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009280 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001009280 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2019-12-18T05:37:09Z
001009280 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-03-30
001009280 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-03-30
001009280 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-03-30
001009280 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-03-30
001009280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001009280 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001009280 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001009280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001009280 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2022$$d2023-08-23
001009280 920__ $$lyes
001009280 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001009280 980__ $$ajournal
001009280 980__ $$aVDB
001009280 980__ $$aI:(DE-Juel1)IEK-7-20101013
001009280 980__ $$aUNRESTRICTED
001009280 980__ $$aAPC
001009280 981__ $$aI:(DE-Juel1)ICE-4-20101013