Home > Publications database > A mountain ridge model for quantifying oblique mountain wave propagation and distribution > print |
001 | 1009280 | ||
005 | 20240712100910.0 | ||
024 | 7 | _ | |a 10.5194/acp-23-7901-2023 |2 doi |
024 | 7 | _ | |a 1680-7316 |2 ISSN |
024 | 7 | _ | |a 1680-7324 |2 ISSN |
024 | 7 | _ | |a WOS:001030413300001 |2 WOS |
037 | _ | _ | |a FZJ-2023-02731 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Rhode, Sebastian |0 P:(DE-Juel1)180866 |b 0 |e Corresponding author |
245 | _ | _ | |a A mountain ridge model for quantifying oblique mountain wave propagation and distribution |
260 | _ | _ | |a Katlenburg-Lindau |c 2023 |b EGU |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1689751604_31084 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Following the current understanding of gravity waves (GWs) and especially mountain waves (MWs), they have a high potential for horizontal propagation from their source. This horizontal propagation and therefore the transport of energy is usually not well represented in MW parameterizations of numerical weather prediction and general circulation models. In this study, we present a mountain wave model (MWM) for the quantification of horizontal propagation of orographic gravity waves. This model determines MW source locations from topography data and estimates MW parameters from a fit of idealized Gaussian-shaped mountains to the elevation. Propagation and refraction of these MWs in the atmosphere are modeled using the Gravity-wave Regional Or Global Ray Tracer (GROGRAT). Ray tracing of each MW individually allows for an estimation of momentum transport due to both vertical and horizontal propagation. The MWM is a capable tool for the analysis of MW propagation and global MW activity and can support the understanding of observations and improvement of MW parameterizations in GCMs. This study presents the model itself and gives validations of MW-induced temperature perturbations to ECMWF Integrated Forecast System (IFS) numerical weather prediction data and estimations of GW momentum flux (GWMF) compared to HIgh Resolution Dynamics Limb Sounder (HIRDLS) satellite observations. The MWM is capable of reproducing the general features and amplitudes of both of these data sets and, in addition, is used to explain some observational features by investigating MW parameters along their trajectories. |
536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 0 |
536 | _ | _ | |a Verbundprojekt QUBICC: Rolle der mittleren Atmosphäre bezogen auf das Klima (ROMIC II) - Teilprojekt 3: Tropische Wellen aus Beobachtungen und Reanalysen (01LG1905C) |0 G:(BMBF)01LG1905C |c 01LG1905C |x 1 |
536 | _ | _ | |a Rolle der mittleren Atmosphäre bezogen auf das Klima (ROMIC-II) - Verbundprojekt WASCLIM - Teilprojekt 4: GLORIA Beobachtungen und Source Transfer Parametrisation (STP) (01LG1907D) |0 G:(BMBF)01LG1907D |c 01LG1907D |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Preusse, Peter |0 P:(DE-Juel1)129143 |b 1 |u fzj |
700 | 1 | _ | |a Ern, Manfred |0 P:(DE-Juel1)129117 |b 2 |
700 | 1 | _ | |a Ungermann, Jörn |0 P:(DE-Juel1)129105 |b 3 |u fzj |
700 | 1 | _ | |a Krasauskas, Lukas |0 P:(DE-Juel1)169740 |b 4 |
700 | 1 | _ | |a Bacmeister, Julio |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Riese, Martin |0 P:(DE-Juel1)129145 |b 6 |
773 | _ | _ | |a 10.5194/acp-23-7901-2023 |g Vol. 23, no. 14, p. 7901 - 7934 |0 PERI:(DE-600)2069847-1 |n 14 |p 7901 - 7934 |t Atmospheric chemistry and physics |v 23 |y 2023 |x 1680-7316 |
856 | 4 | _ | |u https://acp.copernicus.org/articles/23/7901/2023/ |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009280/files/Invoice_Helmholtz-PUC-2023-67.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009280/files/accepted_manuscript_before_editor.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009280/files/acp-23-7901-2023.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1009280 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180866 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129117 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129105 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169740 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129145 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2019-12-18T05:37:09Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-03-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-03-30 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-03-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-12-20T09:38:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-12-20T09:38:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Open peer review |d 2022-12-20T09:38:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-23 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ATMOS CHEM PHYS : 2022 |d 2023-08-23 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ATMOS CHEM PHYS : 2022 |d 2023-08-23 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|