001009360 001__ 1009360
001009360 005__ 20240709094403.0
001009360 037__ $$aFZJ-2023-02776
001009360 041__ $$aEnglish
001009360 1001_ $$0P:(DE-Juel1)190730$$aKhan, Muhammad Shirjeel$$b0$$ufzj
001009360 1112_ $$aXVIII Conference & Exhibition of the European Ceramic Society$$cLyon$$d2023-07-02 - 2023-07-06$$gECerS 2023$$wFrance
001009360 245__ $$aNew insights into the fuel electrode degradation during solid oxide cells operation
001009360 260__ $$c2023
001009360 3367_ $$033$$2EndNote$$aConference Paper
001009360 3367_ $$2DataCite$$aOther
001009360 3367_ $$2BibTeX$$aINPROCEEDINGS
001009360 3367_ $$2DRIVER$$aconferenceObject
001009360 3367_ $$2ORCID$$aLECTURE_SPEECH
001009360 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1692163613_14247$$xPlenary/Keynote
001009360 520__ $$aThe electrochemical performance of solid oxide cermet electrodes is expected to improve with increased ionic conductivity of the ion-conducting phase. We explored this concept coupled with the effects of microstructural and compositional changes in nickel-yttria-stabilized zirconia (Ni-YSZ) and nickel-scandia-ceria-stabilized zirconia (Ni-ScCeSZ) on their electrochemical performance. The electrodes with 56:44 (NiO:YSZ or ScCeSZ) ratio and different thicknesses were symmetrically screen printed on YSZ pellets and sintered at 1400 °C for 5 h. The electrochemical impedance spectroscopy (EIS) for the prepared cells was then evaluated between 800-600 °C in Ar-3%H2. It was found that the area-specific resistance (ASR) for Ni-ScCeSZ was much higher compared to the conventional Ni-YSZ under these conditions, even though the ionic-conductivity of ScCeSZ is greater than YSZ. Increasing the initial NiO content in NiO-ScCeSZ from 56 wt. % to 65 wt. % also did not improve its electrochemical performance relative to Ni-YSZ. The cells were then analyzed using scanning electron microscopy (SEM), which showed the formation of cracks and a contact loss between Ni and ScCeSZ particles after EIS test. No such cracking was observed in these cells before EIS test, demonstrating that the contact loss is associated with the reduction of Ni. For the conventional Ni-YSZ, all the particles were still intact, before and after EIS test, illustrating the presence of large number of triple phase boundaries and hence a better performance than Ni-ScCeSZ. The X-ray diffraction (XRD) analysis did not show any new phase formation or changes in the crystal structures of Ni(O) and ScCeSZ. The transmission electron microscopy (TEM), however, showed the presence of scandium (Sc)-rich phase at the NiO grain boundaries after sintering and provided some interesting insights into the diffusion-related degradation phenomenon responsible for the contact loss between Ni and ScCeSZ particles.
001009360 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001009360 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001009360 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001009360 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001009360 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b1$$eCollaboration author$$ufzj
001009360 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b2$$eCollaboration author$$ufzj
001009360 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$eCollaboration author$$ufzj
001009360 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b4$$eCollaboration author$$ufzj
001009360 7001_ $$0P:(DE-Juel1)129810$$aWessel, Egbert$$b5$$eCollaboration author$$ufzj
001009360 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b6$$eCorresponding author$$ufzj
001009360 8564_ $$uhttps://www.ecers2023.org/index.php?langue=en&onglet=34&idUser=&emailUser=&printable=1
001009360 909CO $$ooai:juser.fz-juelich.de:1009360$$pVDB
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190730$$aForschungszentrum Jülich$$b0$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b1$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b2$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b3$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b4$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129810$$aForschungszentrum Jülich$$b5$$kFZJ
001009360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
001009360 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001009360 9141_ $$y2023
001009360 920__ $$lyes
001009360 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001009360 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
001009360 980__ $$aconf
001009360 980__ $$aVDB
001009360 980__ $$aI:(DE-Juel1)IEK-1-20101013
001009360 980__ $$aI:(DE-Juel1)IEK-2-20101013
001009360 980__ $$aUNRESTRICTED
001009360 981__ $$aI:(DE-Juel1)IMD-1-20101013
001009360 981__ $$aI:(DE-Juel1)IMD-2-20101013