001     1009360
005     20240709094403.0
037 _ _ |a FZJ-2023-02776
041 _ _ |a English
100 1 _ |a Khan, Muhammad Shirjeel
|0 P:(DE-Juel1)190730
|b 0
|u fzj
111 2 _ |a XVIII Conference & Exhibition of the European Ceramic Society
|g ECerS 2023
|c Lyon
|d 2023-07-02 - 2023-07-06
|w France
245 _ _ |a New insights into the fuel electrode degradation during solid oxide cells operation
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1692163613_14247
|2 PUB:(DE-HGF)
|x Plenary/Keynote
520 _ _ |a The electrochemical performance of solid oxide cermet electrodes is expected to improve with increased ionic conductivity of the ion-conducting phase. We explored this concept coupled with the effects of microstructural and compositional changes in nickel-yttria-stabilized zirconia (Ni-YSZ) and nickel-scandia-ceria-stabilized zirconia (Ni-ScCeSZ) on their electrochemical performance. The electrodes with 56:44 (NiO:YSZ or ScCeSZ) ratio and different thicknesses were symmetrically screen printed on YSZ pellets and sintered at 1400 °C for 5 h. The electrochemical impedance spectroscopy (EIS) for the prepared cells was then evaluated between 800-600 °C in Ar-3%H2. It was found that the area-specific resistance (ASR) for Ni-ScCeSZ was much higher compared to the conventional Ni-YSZ under these conditions, even though the ionic-conductivity of ScCeSZ is greater than YSZ. Increasing the initial NiO content in NiO-ScCeSZ from 56 wt. % to 65 wt. % also did not improve its electrochemical performance relative to Ni-YSZ. The cells were then analyzed using scanning electron microscopy (SEM), which showed the formation of cracks and a contact loss between Ni and ScCeSZ particles after EIS test. No such cracking was observed in these cells before EIS test, demonstrating that the contact loss is associated with the reduction of Ni. For the conventional Ni-YSZ, all the particles were still intact, before and after EIS test, illustrating the presence of large number of triple phase boundaries and hence a better performance than Ni-ScCeSZ. The X-ray diffraction (XRD) analysis did not show any new phase formation or changes in the crystal structures of Ni(O) and ScCeSZ. The transmission electron microscopy (TEM), however, showed the presence of scandium (Sc)-rich phase at the NiO grain boundaries after sintering and provided some interesting insights into the diffusion-related degradation phenomenon responsible for the contact loss between Ni and ScCeSZ particles.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Lenser, Christian
|0 P:(DE-Juel1)138081
|b 1
|e Collaboration author
|u fzj
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 2
|e Collaboration author
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
|e Collaboration author
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 4
|e Collaboration author
|u fzj
700 1 _ |a Wessel, Egbert
|0 P:(DE-Juel1)129810
|b 5
|e Collaboration author
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 6
|e Corresponding author
|u fzj
856 4 _ |u https://www.ecers2023.org/index.php?langue=en&onglet=34&idUser=&emailUser=&printable=1
909 C O |o oai:juser.fz-juelich.de:1009360
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190730
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138081
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21