001009385 001__ 1009385
001009385 005__ 20230724203723.0
001009385 037__ $$aFZJ-2023-02791
001009385 041__ $$aEnglish
001009385 1001_ $$0P:(DE-Juel1)190591$$aBasaric, Farah$$b0$$ufzj
001009385 1112_ $$aElectronic Properties of 2-Dimensional Systems$$cGrenoble$$d2023-07-10 - 2023-07-14$$gEP2DS-MSS$$wFrance
001009385 245__ $$aFlux-periodic oscillations in the transport properties of core/shell GaAs/InAs nanowires equipped with normal and superconducting contacts
001009385 260__ $$c2023
001009385 3367_ $$033$$2EndNote$$aConference Paper
001009385 3367_ $$2BibTeX$$aINPROCEEDINGS
001009385 3367_ $$2DRIVER$$aconferenceObject
001009385 3367_ $$2ORCID$$aCONFERENCE_POSTER
001009385 3367_ $$2DataCite$$aOutput Types/Conference Poster
001009385 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1690184332_25540$$xAfter Call
001009385 520__ $$aIn epitaxial GaAs/InAs core/shell nanowires, the charge carriers are confined in the tubular conductor inside the InAs shell. The radial symmetry of the electronic system allows the electronic transport to be controlled using an axially aligned magnetic field via the Aharonov-Bohm effect [1]. Moreover, GaAs/InAs core/shell nanowires in combination with superconducting electrodes are a very interesting platform for flux-controlled Josephson junctions or, when covered with a superconducting full shell, for Majorana devices employing the Little-Parks effect. Recently, we have succeeded in growing crystallographically phase-pure core/shell nanowires that exhibit uniform electrical, mechanical, and optical properties [2]. We have performed magnetotransport measurements on this type of nanowires and compared their properties with those of their polymorphic counterparts. Distinct h/e-peroidic Aharonov-Bohm type oscillations in the magnetoconductance were observed in both cases, with exceptionally large oscillation amplitudes in phase-pure GaAs/InAs core/shell nanowires. Moreover, pronounced h/2e periodic oscillations of the critical current as a function of the axial magnetic field were found in Josephson junctions fabricated from polymorphic GaAs/InAs core/shell nanowires with an in-situ deposited superconducting Al half-shell.[1] F. Haas, P. Zellekens, T. Wenz, N. Demarina, T. Rieger, M. I. Lepsa, D. Grützmacher, H. Lüth, and T.   Schäpers, Nanotechnology, 28, 445202 (2017).[2] M. M. Jansen, P. Perla, M. Kaladzhian, N. von den Driesch, J. Janssen, M. Luysberg, M. I. Lepsa, D.  Grützmacher, and A. Pawlis, ACS Applied Nano Materials 3, 11037 (2020).
001009385 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001009385 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001009385 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001009385 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b1$$ufzj
001009385 7001_ $$0P:(DE-HGF)0$$aDeacon, Russell$$b2
001009385 7001_ $$0P:(DE-Juel1)177623$$aKaladzhian, Mane$$b3$$ufzj
001009385 7001_ $$0P:(DE-Juel1)161192$$aBennemann, Benjamin$$b4$$ufzj
001009385 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b5$$ufzj
001009385 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b6$$ufzj
001009385 7001_ $$0P:(DE-HGF)0$$aIshibashi, Koji$$b7
001009385 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$eCorresponding author$$ufzj
001009385 909CO $$ooai:juser.fz-juelich.de:1009385$$pVDB
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190591$$aForschungszentrum Jülich$$b0$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b1$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177623$$aForschungszentrum Jülich$$b3$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161192$$aForschungszentrum Jülich$$b4$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b5$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b6$$kFZJ
001009385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
001009385 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001009385 9141_ $$y2023
001009385 920__ $$lyes
001009385 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001009385 980__ $$aposter
001009385 980__ $$aVDB
001009385 980__ $$aI:(DE-Juel1)PGI-9-20110106
001009385 980__ $$aUNRESTRICTED