001     1009385
005     20230724203723.0
037 _ _ |a FZJ-2023-02791
041 _ _ |a English
100 1 _ |a Basaric, Farah
|0 P:(DE-Juel1)190591
|b 0
|u fzj
111 2 _ |a Electronic Properties of 2-Dimensional Systems
|g EP2DS-MSS
|c Grenoble
|d 2023-07-10 - 2023-07-14
|w France
245 _ _ |a Flux-periodic oscillations in the transport properties of core/shell GaAs/InAs nanowires equipped with normal and superconducting contacts
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1690184332_25540
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a In epitaxial GaAs/InAs core/shell nanowires, the charge carriers are confined in the tubular conductor inside the InAs shell. The radial symmetry of the electronic system allows the electronic transport to be controlled using an axially aligned magnetic field via the Aharonov-Bohm effect [1]. Moreover, GaAs/InAs core/shell nanowires in combination with superconducting electrodes are a very interesting platform for flux-controlled Josephson junctions or, when covered with a superconducting full shell, for Majorana devices employing the Little-Parks effect. Recently, we have succeeded in growing crystallographically phase-pure core/shell nanowires that exhibit uniform electrical, mechanical, and optical properties [2]. We have performed magnetotransport measurements on this type of nanowires and compared their properties with those of their polymorphic counterparts. Distinct h/e-peroidic Aharonov-Bohm type oscillations in the magnetoconductance were observed in both cases, with exceptionally large oscillation amplitudes in phase-pure GaAs/InAs core/shell nanowires. Moreover, pronounced h/2e periodic oscillations of the critical current as a function of the axial magnetic field were found in Josephson junctions fabricated from polymorphic GaAs/InAs core/shell nanowires with an in-situ deposited superconducting Al half-shell.[1] F. Haas, P. Zellekens, T. Wenz, N. Demarina, T. Rieger, M. I. Lepsa, D. Grützmacher, H. Lüth, and T. Schäpers, Nanotechnology, 28, 445202 (2017).[2] M. M. Jansen, P. Perla, M. Kaladzhian, N. von den Driesch, J. Janssen, M. Luysberg, M. I. Lepsa, D. Grützmacher, and A. Pawlis, ACS Applied Nano Materials 3, 11037 (2020).
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Zellekens, Patrick
|0 P:(DE-Juel1)145960
|b 1
|u fzj
700 1 _ |a Deacon, Russell
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kaladzhian, Mane
|0 P:(DE-Juel1)177623
|b 3
|u fzj
700 1 _ |a Bennemann, Benjamin
|0 P:(DE-Juel1)161192
|b 4
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 5
|u fzj
700 1 _ |a Pawlis, Alexander
|0 P:(DE-Juel1)166158
|b 6
|u fzj
700 1 _ |a Ishibashi, Koji
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 8
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1009385
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145960
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161192
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21