% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Kumar:1009389,
author = {Kumar, Vivek and Bauer, Andreas and Franz, Christian and
Spallek, Jan and Schönmann, Rudolf and Stekiel, Michal and
Schneidewind, Astrid and Wilde, Marc A. and Pfleiderer, C.},
title = {{L}ow-temperature antiferromagnetic order in orthorhombic
{C}e{P}d{A}l 3},
journal = {Physical review research},
volume = {5},
number = {2},
issn = {2643-1564},
address = {College Park, MD},
publisher = {APS},
reportid = {FZJ-2023-02793},
pages = {023157},
year = {2023},
abstract = {We report the magnetization, ac susceptibility, and
specific heat of optically float-zoned single crystals of
CePdAl3. In comparison to the properties of polycrystalline
CePdAl3 reported in the literature, which displays a
tetragonal crystal structure and no long-range magnetic
order, our single crystals exhibit an orthorhombic structure
(Cmcm) and antiferromagnetic order below a Néel temperature
T1=5.6 K. The specific heat at zero field shows two
anomalies, namely, a broad transition at T1=5.6 K followed
by a λ-anomaly at T2=5.4 K. A conservative estimate of the
Sommerfeld coefficient of the electronic specific heat,
γ=121mJK−2mol−1, indicates a moderately enhanced
heavy-fermion ground state. A twin microstructure evolves in
the family of planes spanned by the basal plane lattice
vectors ao and co , with the magnetic hard axis bo common to
all twins. The antiferromagnetic state is characterized by a
strong ao, co easy-plane magnetic anisotropy where the ao
direction is the easy axis in the easy plane. A spin-flop
transition induced under magnetic field along the easy
directions, results in complex magnetic phase diagrams.
Taken together, our results reveal a high sensitivity of the
magnetic and electronic properties of CePdAl3 to its
structural modifications.},
cin = {JCNS-FRM-II / JCNS-2 / JCNS-4 / MLZ / INM-2},
ddc = {530},
cid = {I:(DE-Juel1)JCNS-FRM-II-20110218 /
I:(DE-Juel1)JCNS-2-20110106 / I:(DE-Juel1)JCNS-4-20201012 /
I:(DE-588b)4597118-3 / I:(DE-Juel1)INM-2-20090406},
pnm = {6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ)
(POF4-6G4) / 632 - Materials – Quantum, Complex and
Functional Materials (POF4-632) / DFG project 323760292 -
Mehrkomponentige Elektronische Korrelationen in
Nicht-Zentrosymmetrischen f-Elektron-Verbindungen
(323760292) / DFG project 390814868 - EXC 2111: Munich
Center for Quantum Science and Technology (MCQST)
(390814868) / TOPFIT - Topological Spin Solitons for
Information Technology (291079) / ExQuiSid - Extreme Quantum
Matter in Solids (788031) / DFG project 360506545 - SPP
2137: Skyrmionics: Topologische Spin-Phänomene im Realraum
für Anwendungen (360506545)},
pid = {G:(DE-HGF)POF4-6G4 / G:(DE-HGF)POF4-632 /
G:(GEPRIS)323760292 / G:(GEPRIS)390814868 /
G:(EU-Grant)291079 / G:(EU-Grant)788031 /
G:(GEPRIS)360506545},
experiment = {EXP:(DE-MLZ)NOSPEC-20140101},
typ = {PUB:(DE-HGF)16},
UT = {WOS:001021832800001},
doi = {10.1103/PhysRevResearch.5.023157},
url = {https://juser.fz-juelich.de/record/1009389},
}