001009393 001__ 1009393
001009393 005__ 20240313094859.0
001009393 037__ $$aFZJ-2023-02797
001009393 041__ $$aEnglish
001009393 1001_ $$0P:(DE-Juel1)144576$$aIto, Junji$$b0$$eCorresponding author$$ufzj
001009393 1112_ $$a32nd Annual Computational Neuroscience Meeting$$cLeipzig$$d2023-07-15 - 2023-07-19$$gCNS2023$$wGermany
001009393 245__ $$aTowards classification of spatio-temporal wave patterns based on principal component analysis
001009393 260__ $$c2023
001009393 3367_ $$033$$2EndNote$$aConference Paper
001009393 3367_ $$2DataCite$$aOther
001009393 3367_ $$2BibTeX$$aINPROCEEDINGS
001009393 3367_ $$2DRIVER$$aconferenceObject
001009393 3367_ $$2ORCID$$aLECTURE_SPEECH
001009393 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1690260952_7833$$xAfter Call
001009393 520__ $$aSpatio-temporal oscillatory dynamics are found in a variety of subjects in the natural sciences. [1]They are mathematically described in terms of a complex-valued field variable Z(r, t), from whichone can uniquely derive the oscillation amplitude A(r, t) = |Z(r, t)| and oscillation phase θ(r, t) = argZ(r, t), as functions of location r and time t. In a wide class of systems, the phase variable exhibitsspecific spatio-temporal patterns, such as planar wave, radial wave, rotating wave, and so on.These patterns have also been observed in the cerebral cortex of the brain as spatio-temporal waves(STWs) of local field potential (LFP) signals [2-5]. Previous studies have suggested that specific phasepatterns, in particular planar waves, are related to the coordination of spiking activity of singleneurons, and therefore might play a fundamental role in neuronal information processing [6-8].Studying the implications of the STWs for brain function requires a systematic classification methodto group given phase patterns into distinct wave types (e.g. planar, radial, and rotating). Thestrategies taken in previous studies rely on defining a characteristic measure quantifying a feature ofthe phase variable θ(r, t) for each wave type, and setting a threshold on this measure to assign awave type to an episode of data. An inherent shortcoming of this approach is that it requires the adhoc and eventually arbitrary selection of characteristic measures and thresholds.Here we propose a method to quantify phase pattern characteristics based on principal componentanalysis (PCA), which can be used for a non-parametric classification of wave types. In addition tothe standard PCA, we also employ the complex PCA, which works on a complex-valued data matrixand decompose it into components represented by complex-valued vectors (see Figure). We showthat the principal components (PCs) obtained via the complex PCA can naturally represent phaserelationships among variables. We apply both methods to Utah array recordings of LFPs from themacaque motor cortex, which has been reported to exhibit various types of wave patterns, anddiscuss the commonalities and differences between the PCs obtained by the two methods.Furthermore, we relate the time course of the obtained PCs to the time course of the characteristicmeasures of wave types, which were used in previous studies, and examine how individual PCscorrespond to one or multiple of the characteristic measures.We thereby employ the phase pattern quantification with (the standard or complex) PCA as analternative method of wave type classification. Further, decomposing the cortical waves into“eigenmodes” and studying their relations to neuronal and behavioral covariates would provide apromising approach for investigating the functional implications of the waves.References1. Winfree (1980) The geometry of biological time. Vol. 2.2. Ermentrout et al. (2001) Neuron 29(1):33–44. doi: 10.1016/S0896-6273(01)00178-73. Heitmann et al. (2012) Front. Comput. Neurosci. 6:67. doi: 10.3389/fncom.2012.000674. Denker et al. (2018) Sci. Rep. 8(1):5200. doi: 10.1038/s41598-018-22990-75. Townsend et al. (2018) PLoS CB 14(12):e1006643. doi: 10.1371/journal.pcbi.10066436. Takahashi et al. (2015) Nat. Commun. 6(1):1–11. doi: 10.1038/ncomms81697. Vinck and Bosman (2016) Front. Syst. Neurosci. 10:35. doi: 10.3389/fnsys.2016.000358. Davis et al. (2020) Nat. Commun. 12(1):6057. doi: 10.1038/s41467-021-26175-1
001009393 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001009393 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001009393 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001009393 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x3
001009393 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001009393 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x5
001009393 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b1$$ufzj
001009393 7001_ $$0P:(DE-Juel1)192414$$aKrauße, Sven$$b2$$ufzj
001009393 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b3$$ufzj
001009393 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b4$$ufzj
001009393 909CO $$ooai:juser.fz-juelich.de:1009393$$pec_fundedresources$$pVDB$$popenaire
001009393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144576$$aForschungszentrum Jülich$$b0$$kFZJ
001009393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b1$$kFZJ
001009393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192414$$aForschungszentrum Jülich$$b2$$kFZJ
001009393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b3$$kFZJ
001009393 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b4$$kFZJ
001009393 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001009393 9141_ $$y2023
001009393 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001009393 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001009393 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001009393 980__ $$aconf
001009393 980__ $$aVDB
001009393 980__ $$aI:(DE-Juel1)INM-6-20090406
001009393 980__ $$aI:(DE-Juel1)IAS-6-20130828
001009393 980__ $$aI:(DE-Juel1)INM-10-20170113
001009393 980__ $$aUNRESTRICTED
001009393 981__ $$aI:(DE-Juel1)IAS-6-20130828