001009485 001__ 1009485
001009485 005__ 20240313103133.0
001009485 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02822
001009485 037__ $$aFZJ-2023-02822
001009485 041__ $$aEnglish
001009485 1001_ $$0P:(DE-Juel1)190767$$aShimoura, Renan$$b0$$eCorresponding author$$ufzj
001009485 1112_ $$a32nd Annual Computational Neuroscience Meeting CNS*2023$$cLeipzig$$d2023-07-15 - 2023-07-19$$gCNS*2023$$wGermany
001009485 245__ $$aVisual alpha generators in a full-density spiking thalamocortical model
001009485 260__ $$c2023
001009485 3367_ $$033$$2EndNote$$aConference Paper
001009485 3367_ $$2BibTeX$$aINPROCEEDINGS
001009485 3367_ $$2DRIVER$$aconferenceObject
001009485 3367_ $$2ORCID$$aCONFERENCE_POSTER
001009485 3367_ $$2DataCite$$aOutput Types/Conference Poster
001009485 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1695109929_7856$$xOther
001009485 500__ $$aReferences:[1] Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2017). European Journal of Neuroscience, 48(7), 2498-2508.[2] Silva, L., Amitai, Y., & Connors, B. (1991). Science, 251(4992), 432–435.[3] Roberts, J. A., & Robinson, P. A. (2008). Journal of Theoretical Biology, 253(1), 189–201.[4] Van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M. A., Poort, J., Van Der Togt, C., & Roelfsema, P. R. (2014). Proceedings of the National Academy of Sciences, 111(40), 14332-14341.[5] Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Journal of Neuroscience, 31(13), 4935-4943.
001009485 520__ $$aThe alpha rhythm (~10 Hz) is one of the most prominent features in waking electroencephalograms of a variety of mammals. It is mainly observed in occipitoparietal regions during the eyes-closed resting state. Although alpha is strongly associated with reduced visual attention, it is also related to other functions such as regulation of timing and temporal resolution of perception, and transmission facilitation of predictions to visual cortex [1]. Understanding how and where this rhythm is generated can elucidate its functions. Even today there is no definitive answer to this question, though several hypotheses put forward thalamus and cortex as possible protagonists.In this work, we built a full-density spiking thalamocortical model, including the primary visual cortex (V1) and the lateral geniculate nucleus (LGN), to study two potential alpha rhythm generators: 1) rhythmic bursts produced by pyramidal neurons in L5 at around 10 Hz [2]; 2) a thalamocortical loop delay of approximately 100 ms, as suggested in mean-field models [3]. The cortical component of our model covers 1 mm2 of V1 surface and is divided into four layers (L2/3, L4, L5, and L6), each containing excitatory and inhibitory populations. The thalamic network comprises an excitatory and an inhibitory population. All neurons were simulated by the adaptive exponential integrate-and-fire model. Cortical neurons in L4 and L6 receive thalamocortical connections, and L6 neurons provide feedback projections to the thalamus. We performed all network simulations using the NEST simulator. The resulting spiking activity was recorded and compared with experimental data by means of power spectra and Granger Causality (GC) analysis.Our results show that both mechanisms are capable of generating and spreading alpha oscillations through the layers, but with different laminar patterns. In Hypothesis 1, the GC analysis suggests that the alpha rhythm mainly originates in L5 and L2/3, as reported in experimental studies with macaques where top-down feedback alpha was observed [4]. On the other hand, Hypothesis 2 points to L4 and L6 as the primary source layers, which may be interpreted as feedforward alpha propagation and matches laminar patterns observed in another macaque study [5]. Furthermore, combining both mechanisms resulted in a summation of effects, with GC in the alpha range emanating from all layers. Thus, our findings suggest that the two mechanisms may contribute differently to alpha rhythms, with distinct laminar patterns, and may be expressed either separately or in tandem under different conditions.
001009485 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001009485 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
001009485 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001009485 536__ $$0G:(GEPRIS)347572269$$aDFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269)$$c347572269$$x3
001009485 7001_ $$0P:(DE-HGF)0$$aRoque, Antonio Carlos$$b1
001009485 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b2$$ufzj
001009485 8564_ $$uhttps://juser.fz-juelich.de/record/1009485/files/alpha_RenanShimoura_CNS2023.pdf$$yOpenAccess
001009485 909CO $$ooai:juser.fz-juelich.de:1009485$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
001009485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190767$$aForschungszentrum Jülich$$b0$$kFZJ
001009485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b2$$kFZJ
001009485 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001009485 9141_ $$y2023
001009485 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009485 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
001009485 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
001009485 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001009485 9801_ $$aFullTexts
001009485 980__ $$aposter
001009485 980__ $$aVDB
001009485 980__ $$aUNRESTRICTED
001009485 980__ $$aI:(DE-Juel1)INM-6-20090406
001009485 980__ $$aI:(DE-Juel1)IAS-6-20130828
001009485 980__ $$aI:(DE-Juel1)INM-10-20170113
001009485 981__ $$aI:(DE-Juel1)IAS-6-20130828