| 001 | 1009486 | ||
| 005 | 20240313103133.0 | ||
| 024 | 7 | _ | |a 10.34734/FZJ-2023-02823 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2023-02823 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Pronold, Jari |0 P:(DE-Juel1)165321 |b 0 |u fzj |
| 111 | 2 | _ | |a 32nd Annual Computational Neuroscience Meeting CNS*2023 |g CNS*2023 |c Leipzig |d 2023-07-15 - 2023-07-19 |w Germany |
| 245 | _ | _ | |a Multi-Scale Spiking Network Model of Human Cerebral Cortex |
| 260 | _ | _ | |c 2023 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1695103528_21925 |2 PUB:(DE-HGF) |x Other |
| 500 | _ | _ | |a References: [1] Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Multi-scale account of the network structure of macaque visual cortex. Brain Struct Funct. 2018;223(3):1409–35.[2] Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, et al. A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLOS Comput Biol. 2018;14(10):e1006359.[3] Von Economo C, Koskinas GN. Cellular structure of the human cerebral cortex. Karger Medical and Scientific Publishers; 2009.[4] Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Wu-Minn HCP Consortium. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62–79.[5] Potjans TC, Diesmann M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex. 2014;24(3):785–806.[6] Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, et al. Dendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortex. Cerebral Cortex. 2015;25(12):4839–53.[7] Minxha J, Adolphs R, Fusi S, Mamelak AN, Rutishauser U. Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science. 2020;368(6498).[8] Lamme VAF, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 2000; 23:571–579. |
| 520 | _ | _ | |a The structure of the brain plays a crucial role in shaping its activity. However, the link between structural connectivity and observed neuronal activity remains not fully understood. Previous research utilizing a large-scale spiking network model of leaky integrate-and-fire neurons has addressed this question for macaque cortex [1,2]. In this study, we employ the same framework to investigate human cortex and present a large-scale spiking network model that links the cortical network structure to the resting-state activity of neurons, populations, layers, and areas.Our approach integrates data on cortical architecture, cellular morphologies, and local and cortico-cortical connectivity into a multi-scale framework to predict connection probabilities between neurons based on their types and locations within areas and layers. We represent each cortical area with a 1 mm2 area-specific microcircuit incorporating the full density of neurons and synapses. For this first model version, the laminar thicknesses and neuron densities are derived from the von Economo and Koskinas atlas [3]. The connectivity on the area level is informed by diffusion tensor imaging (DTI) data [4], while predictions on laminar connectivity patterns are derived from predictive connectomics based on macaque data that express regularities of laminar connectivity patterns as a function of cortical architecture. We use the Potjans and Diesmann [5] model as a basis for the local connectivity, scaling it according to cytoarchitectonic data. To map inter-area synapses to target cells, which may have their cell body in a different layer compared to the synapse location, we assign synapses in proportion to the layer- and cell-type-specific dendritic lengths determined from human neuron morphologies [6]. The model contains approximately 4 million neurons and 50 billion synapses and is simulated on JURECA-DC using the NEST simulator.Simulations of the model reveal a state with asynchronous and irregular activity that deviates from experimental recordings in terms of spiking activity and inter-area functional connectivity. By increasing the strength of the inter-area synapses, a state is reached that captures aspects of both microscopic and macroscopic resting-state activity of human cortex measured via electrophysiological recordings from medial frontal cortex and fMRI [7]. Furthermore, we used our model to track the effect of a single additional spike through the large-scale network. We find that a single-spike perturbation spreads rapidly across the entire network within 50-75 ms, comparable to visual response latencies in macaque cortex [8], suggesting that the cortical network allows individual spikes to play a role in fast sensory processing and behavioral responses. Overall, the model serves as a basis for the investigation of multi-scale structure-dynamics relationships in human cortex. |
| 536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 313856816 - SPP 2041: Computational Connectomics (313856816) |0 G:(GEPRIS)313856816 |c 313856816 |x 1 |
| 536 | _ | _ | |a DFG project 347572269 - Heterogenität von Zytoarchitektur, Chemoarchitektur und Konnektivität in einem großskaligen Computermodell der menschlichen Großhirnrinde (347572269) |0 G:(GEPRIS)347572269 |c 347572269 |x 2 |
| 536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
| 536 | _ | _ | |a Brain-Scale Simulations (jinb33_20220812) |0 G:(DE-Juel1)jinb33_20220812 |c jinb33_20220812 |f Brain-Scale Simulations |x 4 |
| 700 | 1 | _ | |a Meegen, Alexander van |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Vollenbröker, Hannah |0 P:(DE-Juel1)180364 |b 2 |
| 700 | 1 | _ | |a Shimoura, Renan |0 P:(DE-Juel1)190767 |b 3 |e Corresponding author |u fzj |
| 700 | 1 | _ | |a Senden, Mario |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Goulas, Alexandros |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Hilgetag, Claus C. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Bakker, Rembrandt |0 P:(DE-Juel1)145578 |b 7 |u fzj |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1009486/files/huvi_RenanShimoura_CNS2023.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1009486 |p openaire |p open_access |p VDB |p driver |p ec_fundedresources |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165321 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)190767 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)145578 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|