001009542 001__ 1009542
001009542 005__ 20230929112541.0
001009542 0247_ $$2doi$$a10.1107/S1600576723005496
001009542 0247_ $$2ISSN$$a0021-8898
001009542 0247_ $$2ISSN$$a1600-5767
001009542 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02866
001009542 0247_ $$2pmid$$a37555213
001009542 0247_ $$2WOS$$aWOS:001046279800004
001009542 037__ $$aFZJ-2023-02866
001009542 082__ $$a540
001009542 1001_ $$0P:(DE-Juel1)159236$$aSchiavone, Maria-Maddalena$$b0
001009542 245__ $$aExtended Q -range small-angle neutron scattering to understand the morphology of proton-exchange membranes: the case of the functionalized syndiotactic-polystyrene model system
001009542 260__ $$a[Erscheinungsort nicht ermittelbar]$$bWiley-Blackwell$$c2023
001009542 3367_ $$2DRIVER$$aarticle
001009542 3367_ $$2DataCite$$aOutput Types/Journal article
001009542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692186260_26561
001009542 3367_ $$2BibTeX$$aARTICLE
001009542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009542 3367_ $$00$$2EndNote$$aJournal Article
001009542 520__ $$aSemi-crystalline polymers exhibit microphase separation into crystalline and amorphous domains characterized by multiple structural levels with sizes ranging from ångströms to hundreds of nanometres. The combination of small-angle (SANS) and wide-angle (WANS) neutron scattering on the same beamline enables reliable in situ characterization of such materials under application-relevant conditions, with the unique advantage of contrast variation by controlled labelling, allowing the structure of such multi-component systems to be resolved in detail. This paper reports a structural analysis performed on deuterated polymer membranes based on syndiotactic polystyrene (sPS) using an extended Q-range SANS and WANS combination, always with the same neutron scattering instrument, either a pinhole SANS diffractometer installed at a research reactor or a `small- and wide-angle' time-of-flight diffractometer installed at a neutron spallation source. sPS is a semi-crystalline material that becomes hydrophilic and proton conducting when suitable functionalization is achieved by thin film sulfonation, and can form various co-crystalline complexes (clathrates) with small organic molecules stored in the crystalline phase as guests in the vacancies between the polymer helices. Therefore, this material is interesting not only for its conducting properties but also for its versatility as a model system to evaluate the usefulness of extended Q-range neutron scattering in such studies. Variation of neutron contrast was achieved in the amorphous hydrophilic phase by using H2O or D2O to hydrate the membranes and in the crystalline phase by loading the clathrates with deuterated or protonated guest molecules. The experimental approach, the advantages and limitations of the two types of instrumentation used in such analyses, and the main results obtained with respect to the structural characterization of sulfonated sPS membranes under different hydration and temperature conditions are reported, and the potential of this method for similar structural studies on other semi-crystalline polymeric materials is discussed.
001009542 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001009542 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001009542 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009542 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001009542 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001009542 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
001009542 7001_ $$00000-0001-9106-6467$$aLamparelli, David Hermann$$b1
001009542 7001_ $$00000-0003-1629-5491$$aDaniel, Christophe$$b2
001009542 7001_ $$0P:(DE-HGF)0$$aGolla, Manuchar$$b3
001009542 7001_ $$00000-0001-5100-9230$$aZhao, Yue$$b4
001009542 7001_ $$00000-0003-4038-7839$$aIwase, Hiroki$$b5
001009542 7001_ $$0P:(DE-HGF)0$$aArima-Osonoi, Hiroshi$$b6
001009542 7001_ $$0P:(DE-HGF)0$$aTakata, Shin-ichi$$b7
001009542 7001_ $$00000-0001-7747-8545$$aSzentmiklosi, Laszlo$$b8
001009542 7001_ $$00000-0001-9598-2913$$aMaroti, Boglarka$$b9
001009542 7001_ $$0P:(DE-HGF)0$$aAllgaier, Jürgen$$b10
001009542 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b11$$eCorresponding author
001009542 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576723005496$$gVol. 56, no. 4$$n4$$p947-960$$tJournal of applied crystallography$$v56$$x0021-8898$$y2023
001009542 8564_ $$uhttps://juser.fz-juelich.de/record/1009542/files/jl5067.pdf$$yOpenAccess
001009542 8767_ $$d2023-08-21$$eHybrid-OA$$jDEAL
001009542 909CO $$ooai:juser.fz-juelich.de:1009542$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001009542 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b11$$kFZJ
001009542 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001009542 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001009542 9141_ $$y2023
001009542 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001009542 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001009542 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001009542 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001009542 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009542 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009542 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001009542 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2022$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001009542 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ APPL CRYSTALLOGR : 2022$$d2023-08-25
001009542 920__ $$lyes
001009542 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001009542 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
001009542 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001009542 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
001009542 9801_ $$aFullTexts
001009542 980__ $$ajournal
001009542 980__ $$aVDB
001009542 980__ $$aUNRESTRICTED
001009542 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001009542 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001009542 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001009542 980__ $$aI:(DE-588b)4597118-3
001009542 980__ $$aAPC