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ABSTRACT

This work provides a concept for three-dimensional magnetic solitons based on mapping the homotopy path between various two-
dimensional solutions onto the third spatial axis. The representative examples of statically stable configurations of that type in the model
of an isotropic chiral magnet are provided. Various static and dynamic properties of such three-dimensional magnetic solitons are discussed

in detail.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097559

I. INTRODUCTION

Chiral magnets are a distinct class of materials, where the
competition between the Heisenberg exchange interaction and the
chiral Dzyaloshinskii-Moriya interaction” (DMI) gives rise to a
wide variety of magnetic solitons—localized magnetic textures with
particle-like properties. The most representative example of mag-
netic solitons in chiral magnets are magnetic skyrmions, which have
been intensively studied both theoretically’ and experimentally” "
in the last decades. In thick films and bulky samples, the mag-
netization vector field of chiral skyrmions resembles a filamentary
structure composed of vortex-like tubes.

More recent studies have revealed a variety of 3D solitons
in chiral magnets beyond skyrmions. The most prominent exam-
ples are chiral bobbers,'** skyrmion bags,IS ¥ heliknotons,'® and
skyrmion braids.”’ Because of their distinct topology, the above-
mentioned solitons possess different static, dynamic, and transport
properties. In particular, the chiral bobbers are distinct by the pres-
ence of magnetic singularity—a Bloch point, while other magnetic
textures are characterized by smooth magnetic vector fields. Because
of this feature, contrary to other solitons, chiral bobbers are not
topological solitons. Skyrmions and heliknotons, on the other hand,
belong to different topological groups characterized by distinct
topological invariants.

In this work, we present another type of magnetic solitons,
which belong to a topological group of skyrmions and are sta-
bilized in bulk crystals of chiral magnets. Because of the unique
properties of these solutions, it is reasonable to classify them as a

distinct class of magnetic solitons. Here, we will refer to them as
hybrid skyrmion tubes. The cross sections of well-studied skyrmion
tubes usually represent nearly identical configurations with small
additional modulations due to the braiding effect’’ or the pres-
ence of a noncollinear background’’ and/or free surfaces.”” We
show that, besides such nearly homogeneous tubes, there are also
solutions where the cross sections represent a continuous transfor-
mation between the skyrmions of different configurations but the
same topological index—skyrmions of the same homotopy group.
In a representative example, we illustrate the stability of such exotic
spin textures and discuss their unique dynamic properties. In addi-
tion, we discuss an important consequence of applying such a
homotopical concept to truly 3D localized magnetic spin textures.
In particular, we present the solution representing a topologically
trivial but statically stable and truly three-dimensional soliton—3D
chiral droplet.

Il. MODEL

The model Hamiltonian for a chiral magnet with bulk-type
DMI has the following form:

E:f ((Vn)> + Dn-Vn + U(n))dVim, (1)
Vin

where n = M/M; is the normalized magnetization |n| = 1 and & and
< are micromagnetic constants of the Heisenberg exchange inter-
action and the DMI, respectively. Vi, is the volume of the magnetic
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sample. The potential energy term U(n) includes an uniaxial (easy-
axis or easy-plane) magnetic anisotropy, & u, and the interaction
with the external magnetic field, Bex || €, is given by

U(n) = _‘%Ung — MsBext1,. )

Following the standard procedure,” "~ the functional (1) can be
written in the following dimensionless form that is more suited for
analysis:

2
g :f(@ + 27 - Vn—47r2(un§ + hnz))dV, 3)
%

where & = E/24/ is the reduced energy and u= % ,/M;Bp and
h = Bext/Bp are the dimensionless values of the anisotropy constant
and the strength of the external magnetic field, respectively. The
integration in (3) is carried out over the reduced volume V = Vi, / L%.
The characteristic parameters Lp = 479/ /2 and Bp= P2 [2M o are
the period of spin spiral and the saturation field for the isotropic
case, #y = 0.

The energy functional (3) remains valid for 2D (or quasi-2D)
systems where the magnetization does not change along the z-axis
and integration is carried out over dV = Idxdy, where [ is the film
thickness. The 2D model of the chiral magnet, besides ordinary
axially symmetric 7-skyrmions, provides a variety of magnetic soli-
tons, e.g. skyrmion bags'”'® and skyrmions with chiral kinks.'” The
homotopy classification of localized solutions in 2D is provided by
the following invariant:

1
Q- [ n- (9,n x d,n) dxdy. )

The solutions with identical integer index Q are called the solutions
of one homotopy class. The latter implies that one can continu-
ously transform the vector fields of such solutions into each other.
For instance, let us assume there are two localized magnetic textures
n; (x,y) and ny(x, y) of identical charge Q. Then, one can introduce
a vector field, n(x, y; s), which depends on an additional parameter
s€[0,1]and possesses the property that for n(x,y; 0) =n;(x,y)
while for n(x,y; 1) = nz(x, ). When n(x, y; s) is differentiable with
respect to x, ¥, and s at any point, such transformation can be called
a homotopy path. Since for any n;(x,y) and n(x,y), there is an
infinite number of homotopy paths, there is no unique method to
construct such paths. To make the search more definite, we consider
only those homotopy paths that also satisfy the minimum energy
path (MEP) criterion. In particular, we use the geodesic nudged
elastic band (GNEB) method””** implemented in Spirit code.”” The
details of the MEP calculation are provided in Appendix A.

I1l. RESULTS

In Fig. 1(a), we provide a representative example of the MEP
between two skyrmions with Q = 1. We show only the spin texture
corresponding to local minima and saddle points. Noticeably, the
textures corresponding to the central minimum state (d) and saddle
points (c), (e) contain a chiral kink'” while another minimum state is
a skyrmion bag free of kinks (b). The MEP presented in Fig. 1(a) sat-
isfies the above criteria for a homotopy path. The parameter s can be
associated with the reaction coordinate, which has a meaning of the
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FIG. 1. (a) MEP between two stable skyrmion states with Q = 1 depicted in (b) and
(d). The spin configuration corresponding to the saddle points are depicted in (c)
and (e). The reaction coordinate is given in reduced unit with respect to its value at
intermediate state depicted in (d). The calculations are performed at h = 0.627 and
u = 0. The energy in (a) is given with respect to the energy of the ferromagnetic
state, Ey.

relative distance between the images (snapshots of the vector field)
in the multidimensional parameter space.

To construct an initial configuration for the 3D skyrmion tube,
one can take the stable 2D skyrmion configuration and place it at
each xy-plane of the 3D simulated domain. A statically stable con-
figuration of such a homogeneous skyrmion tube corresponding to
the 2D skyrmion in Fig. 1(b) is provided in Fig. 2(a). To construct
the initial state for a nonhomogeneous 3D skyrmion tube, we use a
mapping from the homotopy path to the third spatial axis, s — z.
In other words, to create a 3D magnetic texture, we sequentially
lay down the spin texture of the images from MEP on top of each
other along with the z-axis. The statically stable spin configuration
obtained by the energy minimization of that initial state is provided
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FIG. 2. (a) and (b) Isosurfaces n, = 0 for ordinary and hybrid skyrmion tubes stabilized at h = 0.45, u = 0.3 in a box of size Ly = Ly = L; = 6Lp, Lp = 32a with periodic
boundary conditions in all directions. (c)—(h) Cross sections of the hybrid tube, while the ordinary skyrmion tube is characterized by identical magnetic texture [like (c)] in

every z section.

in Fig. 2(b) and its cross sections are shown in (c)-(h). The inter-
mediate region resembling a knot on the isosurface of the skyrmion
string in Fig. 2(b) is well localized and, thus, can be thought of as a
soliton that is hosted by a skyrmion string. This nonhomogeneous
3D skyrmion tube is a representative example of the solutions we
refer to as hybrid skyrmion tubes. For conciseness, the localized
intermediate region is called a knot in the following. The choice of
such terminology is justified by pure visual analogy and has noth-
ing to do with the topological knots. Whether one can continuously
unwind that knot without the appearance of Bloch points represents
an intriguing question that, however, goes beyond the scope of the
present work.

It is worth mentioning that the inhomogeneities along the
skyrmion tubes are always present near the free edges of the sam-
ple. This effect, known as the chiral surface twist,”” was discussed
in detail in Ref. 18 for skyrmion bundles. In contrast to such edge
localized inhomogeneities, the knots at hybrid skyrmion tubes have
an additional degree of freedom to move along the skyrmion tube.

In a strong magnetic field, h > 1 - 2u, the hybrid skyrmion
tubes represent a metastable state embedded in the ferromagnetic
vacuum. For i < 1 — 2u, the vacuum for such states is the cone phase.
The range of fields and anisotropies where hybrid skyrmion tubes

remain stable depends on the particular configuration—the type of
2D skyrmions in the tube cross sections. For instance, the hybrid
skyrmion tube depicted in Fig. 2(b) at u = 0 remains stable at least in
the range 0 < 1 < 0.35.

In general, the hybrid skyrmion tubes can be composed of a
few intermediate states representing stable 2D skyrmions. Here, we
consider the solution composed of two intermediate states only.
Such configurations are easier to handle because they satisfy peri-
odic boundary conditions. It is worth noting that the stabilization of
hybrid skyrmion tubes does not require periodic boundary condi-
tions along the z-axis. The latter makes the experimental observation
of hybrid skyrmion tubes in thick films of chiral magnets quite
promising. In the case of free boundaries along the z-axis, the
tube has additional surface twist modulations. For sufficiently thick
films (~6Lp = 420 nm for FeGe), these modulations do not decrease
the tube stability. On the other hand, in the presence of the free
boundaries, the hybrid skyrmion tube depicted in Fig. 2(b) can con-
tinuously unwind into the host skyrmion tube shown in Fig. 2(a).
This process is illustrated by Movie 1 in the supplementary material,
where each frame was obtained by a manual shift of the entire spin
texture along the z-axis and following incomplete relaxation of the
system. In the case of complete relaxation, the system converges to
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its initial state, which indicates the presence of an energy barrier for
the knot to escape through the free boundary.

To demonstrate the unique dynamic properties of hybrid
skyrmion tubes, we perform micromagnetic simulations based on
the Landau-Lifshitz-Gilbert (LLG) equation,”®

- TZL) (5)

where y is the gyromagnetic ratio, « is the Gilbert damping, and

Heg = —M%% is the effective field. The last term in (5) is the

Zhang-Li torque”” arising from the presence of electric current,
Tz =nx[nx (I-V)n]+&nx (I-V)n, (6)

where the vector I = jupp(1+&2)™'(eM;)™" is proportional to the
current density j, & is the degree of non-adiabaticity, p is the polar-
ization of the spin current, y; is the Bohr magneton, and e is the
electron charge.

When a 3D soliton is embedded in the FM state, the current
direction can be chosen arbitrarily. On the contrary, when the soli-
ton is embedded in nonhomogeneous vacuum, e.g., cone phase,
it is essential to choose the current direction perpendicular to the
q-vector of the cone to prevent the excitation of the background. To
simplify the following discussions, we consider the case of a hybrid
skyrmion tube in ferromagnetic vacuum.

Movie 2 in the supplementary material illustrates the dynam-
ics of the hybrid skyrmion tube when the current is along the z-axis.
The simulations were performed with Mumax’® code. The exam-
ple of Mumax script and the initial state files are provided in the
supplementary material. We used periodic boundary conditions in
all spatial directions to simulate a bulk crystal. Under conditions
when the electric current is parallel to the skyrmion tube, the knot
on the isosurfaces moves along the tube in the direction opposite to
the current. In this case, the position of the host skyrmion tube in
the xy-plane remains fixed.

In Movie 3 in the supplementary material, we show the dynam-
ics of the skyrmion tube when the current is perpendicular to the
skyrmion tube, I || ex. In this case, both the host skyrmion tube and
the knot move. As a result, all three components of the knot velocity
are nonzero.

To quantify the knot velocity, we follow the approach used
in our previous work on 2D skyrmion dynamics.”” Extending this
approach to 3D textures, the position of the knot R = (Ry, Ry, R;)
can be defined as follows:

Ry - &tan’I [ Nij(re) sin(2mry /Ly ) dry

LLy, 7
2 [ Wij(re) cos(2mry /Ly )dry * ()

where ij(ry) = [ ny(r)dridr; is the magnon density averaged in
the ry-plane, where indices i,j,k € {x,y,z}. The sign + accounts
for the direction of soliton motion: along the basis vector e; (+) or
in the opposite direction (—). The integer I is the number of times
the soliton crossed the corresponding domain boundary. By tracing
the position R at each moment in time, we can estimate the instant
velocity of the knot, v = dR/dt, and compare it with the results of
a semi-analytical approach based on the method of collective coor-
dinates suggested by Thiele.” Assuming rigid motion of magnetic

ARTICLE scitation.org/journal/apm

textures with velocity v, i.e, n(r, t) = n(r — vt), from (5) and (6), one
can derive the Thiele equation, i.e.,

Gx (v+1I)+I(av+ED) =0, (8)

where the gyro-vector, G, and the dissipation tensor, I, have
components G; and T';; defined as follows:

on; al’lkr
Gi = — [ EiikEirit /n,-rij dV, (9)
ki K drj Oy
(91’lk 8l’lk
T = —=dv, 10
) Ori O 1o

where g is the Levi-Civita symbol. The advantage of the Thiele
approach is that the solution for the soliton velocity can be written
explicitly. For instance, for I = Iey, the solution of (8) for uniform
skyrmion tubes, I'x; = I'y; = T';; = 0 takes a form identical to that of
the 2D case,

e _IGﬁ + G, Ty (§~a) +fx£ det I
G2 + a2 detl’
-] G.I'xx(§-a)
Y G +a? det [’

v, = 0.

>

(11

For the hybridized skyrmion tube, all the entries of the dissipa-
tion tensor I' have nonzero values and the solution of (8) takes the
following form:

1 G, I+ (rxyrzz_rxzryz) (f—a) +0€£ det f

Yy = - ,
* G, +a? det T
G(I%, — Tul) (§-ax)
v =—1 = , 12
Y Gl + a2 det T (12)
v = IGZ(Gzrxz/‘x + 1—‘xxryz - rxzrxy)(&-—a)
7 = — .

G2T,; + o2 det T

It is worth noting two remarkable features of the solution (12).
First, there is no continuous transition between (12) and (11) even
when Ty, Ty, and T, tend to zero. Second, in the most general
case of 3D solitons, the components of the gyro-vector G can be
thought of as 2D topological charges in corresponding x, y, and z
cross sections. For hybrid skyrmion tubes, however, similar to the
2D case, only the third component of the gyro-vector is nonzero and
proportional to 2D topological charge in the xy-plane, G = 47QL,e,.

To calculate the velocity components in (12), one has to find the
components of the gyro-vector (9) and the dissipation tensor (10) for
a particular magnetization distribution. For this, we use the magne-
tization vector field in static equilibrium obtained by the numerical
energy minimization of the functional (1). It is worth emphasizing
that the soliton velocity obtained from the solutions of the Thiele
equation given by Eq. (8) corresponds to the velocities in a steady-
state only. Thus, the velocities estimated from LLG simulations can
be compared with the analytical solutions only when the transient
state is over, and all the components of v have reached saturation.

In the most general case of 3D solitons, when all three compo-
nents of the velocity are nonzero, one can introduce two deflection

angles: B; = arctan(vy/vx) and 8, = m/2 - arctan(\/v)z( + vf,/vz). The
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TABLE |. Two Hall angles for a hybrid skyrmion tube estimated by the LLG
simulations and the Thiele method of collective coordinates.

By P,
LLG Thiele LLG

Thiele

-17.1° -16.8° 57.3° 59.73°

angle 3, is also known as the skyrmion Hall angle, because of which
we refer to f3, as the second skyrmion Hall angle. Table I demon-
strates good agreement between the values of 8, and 3, estimated
from LLG simulations and those calculated with the Thiele approach
for parameters j = —5 x 10%e, A/m?, « = 0.01, and & = 0.05. Notice-
ably, for the particular tube depicted in Fig. 2(b), the angle §,
is larger than ;. As follows from the Thiele equation (8), when
I = Ie,, in agreement with the micromagnetic simulations, only the
z-component of the knot velocity is nonzero, v, = —I¢/a.

The homotopy concept used for constructing hybrid skyrmion
tubes can be extended further for solitons localized in all three
dimensions. For this, one can consider the homotopy transforma-
tion of any 2D skyrmion with Q =0 into the FM phase. Here,
we examine such transformation on the example of chiral droplet
shown in Fig. 3. The MEP in Fig. 3 is quite similar to that shown
in Fig. 1. Two stable states representing the isolated soliton and the

(a)
6 .,..c ..... I;...,..-co.,.
O o4
o
5 J \
FM ¢ «FM
0 &= :
0 0.5 1.0 1.5 2.0
Reaction coordinate
(b) (c)
Lp
P

FIG. 3. (a) MEP between chiral droplet with Q = 0 depicted in (b) and FM state.
The spin configuration corresponding to the saddle point is depicted in (c). The
reaction coordinate is given in reduced unit with respect to its value at intermediate
state depicted in (b). The calculations are performed at h = 0.65 and u = 0. The
energy in (a) is given with respect to the energy of the ferromagnetic state, Eo.
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saturated FM state are separated by the saddle point. In this trans-
formation, the collapse of the droplet goes by its shrinking, which
has been previously discussed in Refs. 31 and 32.

By mapping the obtained images of the corresponding homo-
topy path onto the spatial z-axis, we constructed the initial state of
the 3D soliton. However, it turned out that such an initial guess
does not lead to a stable configuration in the FM phase but instead
becomes stable in the cone phase vacuum only. The isosurfaces and
cross sections of the stable configuration of the 3D chiral droplet
obtained by numerical energy minimization are shown in Fig. 4. As
seen in (a), the red color in the surface is missing, which means
that by projecting the vector field of the 3D chiral droplet onto an
Sz sphere, one cannot cover it entirely. The latter means that both
the topological invariant (4) and Hopf invariant are zero in this case.
The cross sections in (b) and (c) show well-localization of the soliton.
We estimated the characteristic size of the 3D chiral droplet equal to
~1Lp in all spatial directions.

The stability range for the 3D chiral droplet in terms of the
magnetic field, h, and anisotropy, u, is shown in Fig. 5. Note that
the phase transition lines between the phases are reproduced from
Ref. 33. As follows from the diagram, the 3D chiral droplet stability
region is in the range where the skyrmion lattice is the lowest energy
state, while the cone phase is a meta-stable state. The blurred edges
at h $0.28 and u 5 0.15 denote that we did not succeed in identify-
ing the stability range below these values reliably. At these values of
magnetic field and anisotropy, the helicoid competes in energy with
the cone phase. A more precise estimation of the lower bound for the
3D chiral droplet stability requires much larger sizes of the simulated
domain above the limit of our computational resources.

In isotropic chiral magnets with weak magnetocrystalline
anisotropy, the uniaxial anisotropy required for 3D chiral droplet
stability can be induced by demagnetizing fields when the sample
has a prolate shape of an ellipsoid or a wire, in the limiting case. The
synthesis of such nanowires of B20-type crystals was reported earlier
for MnSi** and Fe;_,Co,Si.*”

The 3D chiral droplet motion can be induced by apply-
ing different external stimuli. First, let us consider the
motion of the 3D chiral droplet induced by the external
magnetic field slightly tilted and rotating about the z-axis,
h = 0.34(sin 6y, cos 27vt, sin 6y, sin 27vt, cos By ). We performed the
micromagnetic simulations assuming the tilt angle 6, = 0.1 and
the small frequency of rotation v =5 MHz, which is close to a
quasi-stationary process. Movie 4 in the supplementary material
demonstrates such motion of the 3D chiral droplet consisting of
two types of motion—translation along the z-axis and rotation
about the z-axis. Remarkably, similar dynamics has been reported
for heliknoton'” and this seems to be a common property of
all 3D localized solitons hosted by a conical phase. The motion
of the 3D chiral droplet free of rotation can be induced by the
cone phase rotation under a static external field. To demonstrate
this, we performed the simulations where we manually rotated
a small number of spins located far from the droplet. As illus-
trated in the supplementary material, Movie 5, the translation
motion of the droplet along the z-axis, in this case, occurs without
its rotation.

In the case of Zhang-Li torque, the gyro-vector of the 3D
droplet equals zero and the Thiele equation (8) provides a trivial
solution, v = £I/a. On the other hand, due to the presence of the
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(b)

FIG. 4. (a) Isosurfaces n, = 0 and n, = 0.98 (black) for 3D chiral droplet stabilized at h = 0.34, u = 0.26 in a box of size Ly = Ly = L, = 3Lp, Lp = 64a with periodic
boundary conditions in all directions. (b) and (c) Sections of the droplet by planes y = 0 and z = 0, respectively.

cone phase, one has to choose 11 q to suppress the excitation of the
cone phase itself. An analysis of the cone phase dynamics induced
by I || qis provided in Appendix B.

One has to note that contrary to the Thiele equation, which
predicts that the 3D chiral droplet should move without deflection,
v || L in numerical simulations, we still observe a slight deflection

0.36
)
0.32 />
5 7
/droplet
<
°
[J]
2 \ /
£ 0.28
[J]
c
(o)}
©
=
0.24 Skyrmion
lattice
Cone
.\
Helicoid T
0.2
0 0.05 0.1 0.15 0.2 0.25 0.3

Anisotropy, u

FIG. 5. The stability range of the 3D chiral droplet (blue) is shown. The phase
transition lines are taken from Ref. 33.

in the soliton motion. Since, in the case of the hybrid skyrmion tube,
we got pretty good agreement between numerical simulations and
the Thiele approach, we attribute this effect to the numerical artifact
caused by the excitation of the cone phase, which, in turn, prevents
reaching the regime of a steady motion. Movie 6 in the supple-
mentary material shows the dynamics of the droplet caused by the
in-plane electric current I || ex. To prevent the excitation of the cone
phase, in this simulation, we pinned the spins on the bottom plane
of the simulated domain.

IV. CONCLUSIONS

In this work, we have discussed new types of 3D magnetic soli-
tons stabilized in chiral magnets—hybrid skyrmion tube and 3D
chiral droplet. We show that the magnetic textures of these solutions
can be explained in terms of homotopy transitions between various
2D skyrmions.

We have studied the static and dynamic properties of new soli-
tons. The parameters of the external magnetic field and magnetic
anisotropy at which the presented solutions remain stabilized are
different and characterized by the various states of the vacuum.
Hybrid skyrmion tubes can be stable in the FM state and cone
phase, while the 3D chiral droplets are stable only in the conical
phase surroundings. It is shown that the dynamics of the hybrid
skyrmion tube can be induced by the electric current modeled by the
Zhang-Li torque in the LLG equation. The electric current applied
along the tube causes the motion of the knot on the skyrmion tube
in the direction opposite to that of the current. The electric current
applied perpendicular to the skyrmion tube leads to more compli-
cated dynamics, which can be described in terms of two skyrmion
Hall angles. The results of LLG simulations agree well with the
analysis based on the Thiele equation.
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For the case of 3D chiral droplets, we show that their motion
besides the electric current can be induced by a rotating external
magnetic field. Since the cone phase is easily excited when the elec-
tric current is not perpendicular to the cone wave vector, an analysis
based on the Thiele approach is difficult in this case. The analytic
solution for the dynamics of the cone phase is provided. Movies pro-
vided in the supplementary material illustrate numerical simulations
for the motion of 3D solitons.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional movies illustrat-
ing the dynamics of 3D solitons discussed in the main text. Sup-
plementary Movie 1 illustrates the escape of the knot on the hybrid
skyrmion tube through the free boundary of the plate. Supplemen-
tary Movies 2 and 3 show the dynamics of the hybrid skyrmion
tube induced by current I || e, and I || ey, respectively. Supplemen-
tary Movie 4 illustrates the dynamics of a 3D chiral droplet induced
by a small precession of the external magnetic field about the z-axis
with low frequency. Supplementary Movie 5 shows the dynamics of
a 3D chiral droplet under the cone spiral rotation induced by a weak
electric current I || e, applied in the bounded volume far from the
droplet. Supplementary Movie 6 shows the dynamics of a 3D chiral
droplet induced by current I || ex when the spins in the plane z = 0
are pinned.

The magnetization in the movies is presented by the isosurfaces
n, = 0 and the standard color code used in Mumax for visualiza-
tion of the unit vector fields. The exceptions are Movies 4-6 where
we use red-blue color code for the ny-component of magnetization:
n=(0,-1,0), red and n = (0,1,0), blue.
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APPENDIX A: DETAILS OF MEP CALCULATION

The MEP in Fig. 1(a) represents a homotopy path between two
states (b) and (d). To get the MEP without singularities, one has to
make a reasonable assumption for the initial path. The straightfor-
ward and often used approach based on the interpolation between
two configurations by simple rotation of the spins is not appropri-
ate for this purpose. It is easy to check that the topological index
Q is often not conserved along the MEP with this approach. To
avoid such a behavior of the GNEB solver, we have constructed the
ansatz for the initial path using the energy minimization and drag-
and-drop function implemented in Spirit. In particular, as seen in
Figs. 1(b)-1(e), the intermediate states represent the elongation and
twisting of the magnetic texture near the chiral kink. Starting with
the state depicted in Fig. 1(b) and using the drag-and-drop option,
we enforce the chiral kink to elongate and bend to form a state
similar to that in (c) and (e). We intentionally stop the relaxation
process before the system converges to one of two local minima as
in Fig. 1(b) or Fig. 1(d). Then, we collect such unrelaxed snapshots
of the spin texture with the different levels of elongation of the part
containing the chiral kink and use them as an initial guess for MEP.

The calculations were performed using the following para-
meters: Ly = Ly = 4Lp with Lp = 64a.

APPENDIX B: CONE PHASE ROTATIONAL DYNAMICS

In terms of spherical angles (©,®), the magnetization reads
as follows: n = (sin ® cos @, sin @ sin @, cos @), Assuming that at
t = 0, the magnetization profile is given by the cone phase ® = @,
® =2mz + ¢, we can find an analytic solution for the LLG equa-
tion with the current I = Ie, turned on at t > 0. The uniformity of
the magnetic texture in the xy-plane leads to the following system of
equations for (©, D):

2 2.
676) - (8—@) sin 20 +2n6—® sin 20 — 47°y sin 20 — 47°h sin 0+ ifa—e) - aa—®+(a—® - za—q)) sin ® =0,
072 0z 2 0z 0z ot ot 0z (B1)
—28—682 cos © — ﬁ sin ®+4n8—® cos @—i8—® + 99 +(oca—® —ifa—q))sin 0=0
0z Oz 022 0z 0z Ot or 0z T
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Here, 7= yBpt/4n” is the dimensionless time and i=47"I  The formula (B2) is meaningful only at & # a. In the case & =a,
/ yL,Bp is the parameter of the electric current. Although the system the cone phase cannot be excited by the current. Below the crit-
(B1) represents two coupled nonlinear partial differential equations, ical regime, ie. i€ (iZ,il), the angle ® monotonically changes
its solution can be written for the case when ® = O(1). from ©.—the equilibrium cone angle without the electric current
We found that strong currents can lead to a transition from the  to @;—the equilibrium cone angle in dynamical steady state in the
cone phase to the FM state. The critical current at which this happens presence of the current:
is given by

i(§-a)
27a(1 - 2u)

+  2ma(l-2u)
i* = f_ia(cos Oc £1), (B2) cos Or = cos O — (B3)

J

For i ¢ (i, i ), the angle ®; equals to 0 or 7 depending on the sign of the current, i. At i € (i, i ), the solution of (B1) for ® can be
written as follows:

1 1 1 1 1 1+{ 1-cos ® _ 0
87‘[20(‘[_ ;lcos®c¥1_;cos®¥l+27m (1+cos®c1—c05@))’az_ial’aﬁat ’ (B4)
1+a2 1 In ( 1+cos® )“‘_“Z( 1-cos O, )“‘”2( ai—a cos © )2“2 laa) # [as]
a?—a \\l+cos O 1-cos ® a1—az cos O 1T
[
where a; = h—i(¢ - «) /27 and a; = 1 — 2u. The solution for @ is To verify the solutions obtained, we compare them with the
given by results of LLG simulations performed for different values of the
current but fixed values of & = 0.34, u = 0.26, « = 0.01, and & = 0.05.
O(1,2) = 27r(z . 51) o + 1 tan(@c/Z). (B5) The critical current values (B2) for these parameters are i; ~ —0.22,
’ o tan(©/2) it ~1.29. We have performed simulations for two current values

within the critical range: i; = —0.15, i, = 0.15, and for one outside
As follows from (B4), at 7 — oo, one has cos ® = cos Oy = a;/a,. In this range i3 = 2. The results are provided in Fig. 6. For all the three
this case, Eq. (B5) describes the rotation of the cone phase with  cases, we see a good agreement between numerical and analytical
constant velocity I§/a, which agrees with the Thiele prediction  solutions at least for the chosen simulation time. At longer times, the
for topologically trivial configurations. Noticeably, the dynamics  z-component of the magnetization tends to the limit value accord-
described by the LLG equation reaches a dynamically steady state ingly to (B3). For the cases shown in (a) and (b), these limit values
exponentially fast. Note also that solutions (B4) and (B5) remain  are about 0.51 and 0.91, respectively. For the case shown in (c) cor-
valid not only for the bulk systems but also for the films with free  responding to the current above the critical value, the magnetization
boundaries along the z-axis. The latter remain valid for any h and u tends to —1. As one can deduce, applying the current I || q allows
where the surface modulations'’ do not perturb the cone phase. This  manipulating the cone phase angle and its dynamics in a controllable
follows from the fact that the solutions obtained satisfy the bound- way.

ary conditions: 9,@ = 0, 9,® = 27 on the free surface, z = const, for The obtained analytical solutions, besides their pure academic
any 7. interest, can be used also for testing the accuracy of numerical
(a) 10 (b)
c
)
©
N
@
c
()]
©
=
-0.5( e — Rx
o—n
—C0sO, 12 S 9
-1, PR IR
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Time, ns Time, ns Time, ns

FIG. 6. (a)-(c) Functional dependencies of magnetization components on time at z = 0 for current values iy = —0.15, i = 0.15, and i3 = 2. Solid lines represent the analytic
solutions (B4) and (B5) while the points are obtained in numerical simulations with Mumax. The magenta solid line corresponds to the limit value for n, as follows from (B3).
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schemes for solving the LLG equation. In particular, the solutions
of (B1) in a special case of zero damping, « = 0, can be written in a
more compact form as follows:

e} )
®=2 arctan(tan ieszr),

27 In 1 + tan? %ez’”&

ikk 1+tan?g
(B6)

@ = 271(z +i1) + o — 4 (1 - 2u — h) T +

The stability of LLG solvers typically requires the presence of
nonzero damping. Therefore, the solutions (B6) can be useful for
testing new LLG solvers, which are free of this limitation. Both cases
a =0 and « # 0 can be generalized for the case of time-dependent
currents I = I(t) easily. A detailed analysis of this case is beyond the
scope of the present study and will be provided elsewhere.
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