001009615 001__ 1009615
001009615 005__ 20231027114411.0
001009615 0247_ $$2doi$$a10.1021/acs.nanolett.3c00153
001009615 0247_ $$2ISSN$$a1530-6984
001009615 0247_ $$2ISSN$$a1530-6992
001009615 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02920
001009615 0247_ $$2pmid$$a37459226
001009615 0247_ $$2WOS$$aWOS:001030480300001
001009615 037__ $$aFZJ-2023-02920
001009615 082__ $$a660
001009615 1001_ $$00000-0002-4231-1638$$aSheverdyaeva, Polina M.$$b0$$eCorresponding author
001009615 245__ $$aGiant and Tunable Out-of-Plane Spin Polarization of Topological Antimonene
001009615 260__ $$aWashington, DC$$bACS Publ.$$c2023
001009615 3367_ $$2DRIVER$$aarticle
001009615 3367_ $$2DataCite$$aOutput Types/Journal article
001009615 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692362184_8449
001009615 3367_ $$2BibTeX$$aARTICLE
001009615 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009615 3367_ $$00$$2EndNote$$aJournal Article
001009615 520__ $$aTopological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy–momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.
001009615 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001009615 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009615 7001_ $$00000-0002-0870-6361$$aHogan, Conor$$b1$$eCorresponding author
001009615 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b2
001009615 7001_ $$0P:(DE-HGF)0$$aFujii, Jun$$b3
001009615 7001_ $$00000-0001-9957-3535$$aVobornik, Ivana$$b4
001009615 7001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b5
001009615 7001_ $$00000-0003-2199-1053$$aKundu, Asish K.$$b6
001009615 7001_ $$00000-0002-5560-718X$$aGardonio, Sandra$$b7
001009615 7001_ $$00000-0003-3923-750X$$aBenher, Zipporah Rini$$b8
001009615 7001_ $$00000-0001-9394-2563$$aSanto, Giovanni Di$$b9
001009615 7001_ $$0P:(DE-HGF)0$$aGonzalez, Sara$$b10
001009615 7001_ $$00000-0001-8698-1468$$aPetaccia, Luca$$b11
001009615 7001_ $$0P:(DE-HGF)0$$aCarbone, Carlo$$b12
001009615 7001_ $$00000-0002-7771-8737$$aMoras, Paolo$$b13
001009615 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.3c00153$$gVol. 23, no. 14, p. 6277 - 6283$$n14$$p6277 - 6283$$tNano letters$$v23$$x1530-6984$$y2023
001009615 8564_ $$uhttps://juser.fz-juelich.de/record/1009615/files/NanoLett_23_6277.pdf$$yOpenAccess
001009615 8564_ $$uhttps://juser.fz-juelich.de/record/1009615/files/acs.nanolett.3c00153.pdf$$yOpenAccess
001009615 909CO $$ooai:juser.fz-juelich.de:1009615$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b2$$kFZJ
001009615 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001009615 9141_ $$y2023
001009615 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009615 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009615 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001009615 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2023-10-24
001009615 920__ $$lyes
001009615 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001009615 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001009615 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
001009615 980__ $$ajournal
001009615 980__ $$aVDB
001009615 980__ $$aUNRESTRICTED
001009615 980__ $$aI:(DE-Juel1)PGI-1-20110106
001009615 980__ $$aI:(DE-Juel1)IAS-1-20090406
001009615 980__ $$aI:(DE-Juel1)PGI-6-20110106
001009615 9801_ $$aFullTexts