001     1009680
005     20250701125837.0
024 7 _ |a 10.1016/j.memsci.2023.121955
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02933
|2 datacite_doi
024 7 _ |a WOS:001051369300001
|2 WOS
037 _ _ |a FZJ-2023-02933
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bittner, Kai
|0 P:(DE-Juel1)191155
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A mathematical model for initial design iterations and feasibility studies of oxygen membrane reactors by minimizing Gibbs free energy
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731914844_2531
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was supported by the Federal Ministry of Education and Research (Germany) [grant 03SF0648].
520 _ _ |a Ceramic Membrane Reactors offer an opportunity towards the transition to renewable energies and defossilized economies by efficiently coupling chemical reactions and heat utilization. To identify viable processes, mathematical models are needed that allow a straightforward assessment. In this study, a generalized model is presented that can be applied to membrane reactor concepts using a mixed oxygen transport membrane. The model assumes chemical equilibrium which is realized by minimizing the Gibbs free energy in the individual reaction chambers. Both reaction chambers are coupled by the Wagner equation to account for the oxygen ion flux through the membrane. Experimental data from the literature were used to validate the model for water splitting, partial oxidation of methane, and the coupling of these two processes. The model allows to investigate various process parameters such as oxygen flux and gas compositions, making the model particularly suitable for feasibility studies and initial design iterations for new reactor developments.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Margaritis, Nikolaos
|0 P:(DE-Juel1)157695
|b 1
|u fzj
700 1 _ |a Schulze-Küppers, Falk
|0 P:(DE-Juel1)129660
|b 2
700 1 _ |a Wolters, Jörg
|0 P:(DE-Juel1)133776
|b 3
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 4
|e Last author
|u fzj
773 _ _ |a 10.1016/j.memsci.2023.121955
|g Vol. 685, p. 121955 -
|0 PERI:(DE-600)1491419-0
|p 121955 -
|t Journal of membrane science
|v 685
|y 2023
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/1009680/files/OAD0000499719.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1009680/files/Bittner%20et%20al.%20-%202023%20-%20A%20mathematical%20model%20for%20initial%20design%20iterations.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1009680
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142196
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MEMBRANE SCI : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MEMBRANE SCI : 2022
|d 2023-10-21
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21