001009697 001__ 1009697
001009697 005__ 20240712113045.0
001009697 0247_ $$2doi$$a10.1021/acs.inorgchem.3c01579
001009697 0247_ $$2ISSN$$a0020-1669
001009697 0247_ $$2ISSN$$a1520-510X
001009697 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02942
001009697 0247_ $$2pmid$$a37466299
001009697 0247_ $$2WOS$$aWOS:001032178200001
001009697 037__ $$aFZJ-2023-02942
001009697 082__ $$a540
001009697 1001_ $$0P:(DE-HGF)0$$aZhao, Tong$$b0
001009697 245__ $$aSynthesis-Controlled Polymorphism and Anion Solubility in the Sodium-Ion Conductor $Na_{3}InCl_{6–x}Br_x$ (0 ≤ $x$ ≤ 2)
001009697 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001009697 3367_ $$2DRIVER$$aarticle
001009697 3367_ $$2DataCite$$aOutput Types/Journal article
001009697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705057587_32018
001009697 3367_ $$2BibTeX$$aARTICLE
001009697 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009697 3367_ $$00$$2EndNote$$aJournal Article
001009697 520__ $$aMotivated by the significant transport property improvement of the anion-substituted lithium metal halides, a series of anion mixed solid solutions of Na3InCl6–xBrx (0 ≤ x ≤ 2) are successfully synthesized by ball milling and subsequent annealing. By milling, the Na3InCl6–xBrx solid solution series crystallizes in a monoclinic P21/n phase, while the subsequently annealed Na3InCl6–xBrx series transforms into a trigonal P3̅1c phase. Through annealing and changes of the structure type, greater anion solubility can be achieved. The halide substitution slightly improves the ionic conductivity in the Na3InCl6–xBrx series, indicating that mixed halide compositions and their structural changes affect the ionic transport albeit less strongly than in the lithium analogues such as Li3YCl6–xBrx and Li3InCl6–xBrx.
001009697 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001009697 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009697 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin$$b1$$ufzj
001009697 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b2$$eCorresponding author$$ufzj
001009697 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.3c01579$$gVol. 62, no. 30, p. 11737 - 11745$$n30$$p11737 - 11745$$tInorganic chemistry$$v62$$x0020-1669$$y2023
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/zhao-et-al-2023-synthesis-controlled-polymorphism-and-anion-solubility-in-the-sodium-ion-conductor-na3incl6-xbrx-%280-x-2%29.pdf$$yRestricted
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/revised_manuscript.pdf$$yPublished on 2023-07-17. Available in OpenAccess from 2024-07-17.
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/zhao-et-al-2023-synthesis-controlled-polymorphism-and-anion-solubility-in-the-sodium-ion-conductor-na3incl6-xbrx-%280-x-2%29.gif?subformat=icon$$xicon$$yRestricted
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/zhao-et-al-2023-synthesis-controlled-polymorphism-and-anion-solubility-in-the-sodium-ion-conductor-na3incl6-xbrx-%280-x-2%29.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/zhao-et-al-2023-synthesis-controlled-polymorphism-and-anion-solubility-in-the-sodium-ion-conductor-na3incl6-xbrx-%280-x-2%29.jpg?subformat=icon-180$$xicon-180$$yRestricted
001009697 8564_ $$uhttps://juser.fz-juelich.de/record/1009697/files/zhao-et-al-2023-synthesis-controlled-polymorphism-and-anion-solubility-in-the-sodium-ion-conductor-na3incl6-xbrx-%280-x-2%29.jpg?subformat=icon-640$$xicon-640$$yRestricted
001009697 909CO $$ooai:juser.fz-juelich.de:1009697$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b1$$kFZJ
001009697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b2$$kFZJ
001009697 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001009697 9141_ $$y2023
001009697 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001009697 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001009697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2022$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001009697 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001009697 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001009697 9801_ $$aFullTexts
001009697 980__ $$ajournal
001009697 980__ $$aVDB
001009697 980__ $$aUNRESTRICTED
001009697 980__ $$aI:(DE-Juel1)IEK-12-20141217
001009697 981__ $$aI:(DE-Juel1)IMD-4-20141217