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High-dimensional brain activity is often organised into lower-dimensional neural manifolds. However,
the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multielectrode
electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4 and DP with a high spatio-
temporal resolution. We find, for the first time, that the population activity of V1 contains two
separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct
dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal
region of V1, which are significantly stronger during the eyes-open periods, a previously unknown
effect. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the
experimental findings. Taken together, our analyses and simulations suggest that top-down signals
modulate the population activity of V1, causing two distinct neural manifolds. We postulate that the
top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses,
resulting in a type of visual stand-by mode.
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Introduction

1 The brain can be described as a high-dimensional dynamical system capable of representing and
2 processing a plethora of low-dimensional variables.

3 The time-resolved activity of a population of neurons can be considered as a trajectory in a high-
+dimensional space, where each neuron represents one dimension; i.e., the state space of the neural
ssystem. Typically, the system does not attain all possible states in the state space, but rather remains
¢ confined to small subsets. These subsets of the state space are referred to as a neural manifolds'™®.
7 Neural manifolds have been shown to encode aspects such as decision-making in the prefrontal cortex
< of macaque®, hand movement trajectories in the motor cortex of macaque?>7, odour in the piriform
o cortex of mice®, head direction in the anterodorsal thalamic nucleus of mice®, and spatial position in
.0 the hippocampus of mice”. The study of neural manifolds in the visual cortex has been conducted in
11 mice'®!! and macaque'?!®. However, to the best of our knowledge, the state dependence of neural
1> manifolds in the primary visual cortex (V1) of macaque has not yet been investigated.
13 Neural manifolds often have an intricate structure, which can be studied using methods borrowed
1+ from computational topology®'%!4. In addition to the topology, the number of uncorrelated covariates
15 required to capture the variance in the state space is studied as a measure of the dimensionality of a
ioneural system 101520 " Regardless of species and brain area, the dimensionality is drastically lower
i7than the total number of recorded neurons (i.e., state-space dimension)®, suggesting robust encoding of
15 low-dimensional variables. Stringer et al.'? showed that the dimensionality of visual cortical activity in
19 mice can vary dynamically to encode precise visual input, seen as changes in the power law exponent of
20 the explained variance. Such dynamical changes in dimensionality have not yet been demonstrated in
21 other species.
22 Whether a subject has its eyes open or closed is known to affect the activity in the visual cortex,
21725 In particular, the spectral power in the alpha frequency band (roughly 8-12 Hz)
21is known to decrease when the eyes are open, commonly known as alpha blocking?® 2%, Alpha blocking
25 is usually attributed to desynchronisation®” or oscillatory damping?® within V1. However, the concrete
26 pathway(s) triggering these phenomena, and the relation between eye closure and neural manifolds in
27 V1, are still unknown.
28 The primary visual cortex (V1) is known to represent fine details of visual input at both single-
soneuron and population levels'???. The visual system is hierarchical in nature, with information
s travelling from lower to higher areas (bottom-up) and vice versa (top-down), within specific frequency
51 bands® 32, Top-down signals from V4 to V1 are known to mediate visual attention for figure-ground
52 segregation and contour integration in macaque? 3%, Recent evidence suggests that top-down signals
ss can modulate neural manifold geometry and their dimensionality®”?®. Naumann et al.?” show in
a1 stlico that top-down signals can rotate neural manifolds to maintain context-invariant representations.
55 Dahmen et al.?® show that recurrent connectivity motifs modulate the dimensionality of the cortical
s activity. As effective connectivity is input-dependent®’, a change in top-down input may therefore affect
s7the dimensionality of neural activity. However, whether top-down signals modulate neural manifold
ss geometry and dimensionality in vivo remains to be shown.
39 Here, we study the state space of the primary visual cortex of the macaque (N=3) during the resting
o state and its relation to the top-down signals from higher visual areas (V4, DP). We find that the
11 population activity of macaque V1 is organised as two distinct high-dimensional neural manifolds, which
1> are correlated with the behaviour (eye closure) of the macaques, but not related to any visual stimuli.
13 The dimensionality of each of these manifolds is significantly different, with higher dimensionality found
11 during the eyes-open periods than the eyes-closed periods. In addition, we estimated input from higher
i cortical areas to V1 and found that these top-down signals (in the form of LFP beta-band spectral
1 Granger causality) are significantly stronger during the eyes-open periods, suggesting they play a role
i7in modulating the neural manifolds and their dimensionality. Finally, we simulate a spiking neuron
1s model under resting-state conditions and show that top-down signals can induce multiple manifolds by
1o changing the firing modes of the network. Taken together, the data analysis and simulations show that
50 top-down signals could actively modulate the V1 population activity, leading to two distinct neural
51 manifolds of macaque visual cortical activity.

23even in darkness
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Figure 1: Overview of the experiment and neural manifold construction. a Illustration of the experimental setup.
b Approximate locations of array implants in both experiments. Exact placement of the arrays differs slightly
between subjects L and A. ¢ Steps for obtaining the multi-unit activity envelope (MUAe)*°, used in this study.
Band-pass filtering is performed between 500 Hz and 9 kHz, and the rectified signal is low-passed at 200 Hz to
obtain the MUAe. d Schematic representation of state space and a neural manifold. Note that time is implicit
within the neural manifold.

52 To explore the activity in the visual cortex, the intracortical electrical potential from the visual cortex
53 of three rhesus macaques (Macaca mulatta) was recorded. The experiments simultaneously recorded the
ssactivity from V1 and V4 (macaques L & A)*! and from V1 and DP (macaque Y, see Figure 1b)*2. The
ss recordings were made in the resting state, i.e., the macaques sat head-fixed in a dark room and were not
s6 instructed to perform any particular task. In this state the macaques often showed signs of sleepiness
s7and kept their eyes closed for periods of variable duration. The right eye—contralateral to the site of
ss neural recording—was tracked using an infrared camera, allowing the identification of periods of open
soor closed eyes. See methods Electrophysiological data from macaques L & A and Electrophysiological
s data from macaque Y for further details on the data acquisition and processing. The experimental
s1setup and data processing steps are illustrated in Figure 1.

Two distinct neural manifolds in V1 correlated with eye closure

o2 To explore the activity of the visual cortex, we characterise the high-dimensional population activity
o3(between 64 and 800 electrodes, see Table 1 for details) for each area and macaque in terms of the
s« downsampled (1 Hz) multi-unit activity envelope (MUAe)?° (Figure 2a). We projected the population
o5 activity into a 3D space for visualisation using principal component analysis (PCA) (Figure 2b-d).

66 In V1, at least two distinct neural manifolds are apparent in the 3D projection space; sample session
o7 in Figure 2b-d, see Figure S1-S6 for all other sessions and subjects. We labelled the manifolds according
o5 to the sign of the log odds of a two-component Gaussian mixture model (see methods Neural manifolds
soand clustering and Outlier removal). The log odds represent the probability for a given data point
70 to correspond to one manifold or the other. For the remainder of this paper we consider points with
71 positive log odds to belong to 'manifold 0’ (colour-coded in blue throughout the paper) and points with
7 negative log odds to belong to 'manifold 1’ (colour-coded in red throughout the paper).

73 To confirm that the two manifolds in the lower-dimensional projection are not an artefact of the
72 dimensionality reduction, we estimated the Betti numbers of the high-dimensional population activity
75 using persistent homology (see Methods, Topological data analysis). The persistence barcodes show
7o that at least two independent generators of the Hy homology groups exist in the high-dimensional
77 population activity, corresponding to two connected components (Figure S7), i.e., two distinct neural
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Figure 2: Two distinct neural manifolds in V1 correlated with eye closure. a Overview of the experimental data
from session L_RS_250717. From top to bottom: Time evolution of the eye signal; the z-scored MUAe signal for
each electrode (electrodes ordered by their correlation with the eye signal); the mean z-scored MUAe at each
time point; and the log odds overlaid with the most likely manifold (two clusters, Gaussian mixture model). b, c,
d First three principal components of the MUAe population activity. Colours indicate the manifold identified
via the log odds of a Gaussian mixture (b), the eye closure (c) and the mean z-scored MUAe (d). Each dot
represents a different point in time. Outliers were excluded from the neural manifolds shown in b—d, see Outlier
removal. e, f Violin plots of the distribution of the log odds across epochs, respectively distinguished according
to eye closure (e, result of a logistic regression test shown) and z-scored MUAe (f). Horizontal bars indicate
medians of the distributions.

7s manifolds. Thus, we confirm that the two manifolds observed in the 3D projection are inherent to the
7o high-dimensional space.

80 Additionally, we tested whether the observed manifolds could be an artefact of the MUAe signal.
s1 We spike-sorted one session (L_RS_250717) with a semi-automatic method and analysed the population
s2 activity resulting from the single-neuron firing rates (Figure S8). The spiking activity also displayed
3 two manifolds, in agreement with the MUAe signals.

84 While the activity of visual cortex is mainly driven by visual input, whether and to what extent
s5 1t is separately modulated by eye closure is unclear. Marking data points on the V1 manifolds with
ss the eye closure signal (Figure 2b) reveals that one manifold strongly relates to the eyes-open periods,
s7whereas the other manifold strongly relates to the eyes-closed periods.

88 To confirm the correlation between eye closure and manifolds, we tested the differences between the
so eyes-open and eyes-closed periods using a twofold approach. First, we performed a logistic regression
90 between the eye closure signal and the log odds, revealing a significantly higher than chance correlation
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o1in all sessions (Figure 2e). Second, we visualised the distribution of the log odds during the eyes-open
o2 and eyes-closed periods separately; showing a clear correspondence between the eye closure and the
o3 sign of the log odds in most cases (Figure 2e). Taken together, the logistic regression and the log-odds
o1 distributions demonstrate that membership of a point in state space in one of the two V1 manifolds is
95 closely related to eye closure. Given this, we will refer to the manifolds as the eyes-open manifold or
96 the eyes-closed manifold.

o7 The existence of two separate manifolds could be trivially explained if the MUAe activity levels were
os significantly different between the eyes-open and eyes-closed periods, and the manifolds simply reflected
99 the population activity level. To examine this possibility, we checked whether higher-activity epochs
100 uniquely correspond to one of the manifolds. The violin plots of the full data distribution—based on the
101 z-scored MUAe shown in Figure 2a—show that there is no clear separation into two manifolds (Figure 2f).
102 Additionally, we visualised the 2D histograms of z-scored MUAe against log odds (Figure S9). Both
103 the violin plots and the 2D histograms suggest that the activity level alone does not fully explain the
101 presence of the two neural manifolds in macaque V1.

105 For completeness, we also visualised the population activity from V4 and DP (Figure S10, S11). In
106 contrast to V1, the population activity in areas V4 and DP does not appear to contain two distinct
107 neural manifolds. We also tested the relationship between neural activity and eye closure in V4 and
10s DP (Figure S12), using the same procedure as for V1. Although some correlation is observed between
100 eye closure and log odds, the violins reveal no clear manifold separation. Thus, we conclude that the
110 observed manifolds are restricted to V1 and are not present in V4 or DP.

Higher dimensionality during eyes-open periods, primarily due to decorrelation

111 To further understand the functional role and implications of the observed neural manifolds in V1, we
112 studied their dimensionality. We used the participation ratio (PR, Equation 1), which is defined via the
113 percentage of variance explained by the principal components of the covariance matrix'?3%. The PR
114 can be rewritten in terms of the statistics of the covariance matrix

EOPO N
RN T e Do)

(1)

115 where \; are the eigenvalues of the covariance matrix and IV is the number of electrodes. v, m, and s
116 are the ratios between the standard deviation of auto-covariances, average cross-covariances, and the
17 standard deviation of cross-covariances with respect to the average auto-covariances, respectively. See
11 Dimensionality for detailed methods.

119 To study the dimensionality, we computed the time-varying PR, from the z-scored MUAe signals, by
120 calculating the PR for windows of 30 s width (1 s steps, thus 29 s of overlap with adjacent windows),
121 see Figure 3a. Stronger MUAe activity is typically associated with higher variance, which may bias the
122 results toward higher dimensionality. We avoided bias due to the varying activity level by normalising
125 the data (via z-scoring) within each window. We found that there is a strong correlation between the
121log odds and the time-varying PR (Figure 3b) and compared the PR values between the two manifolds
125 using a Mann-Whitney U test (Figure 3c). The correlation and tests show that the dimensionality is
126 higher during the eyes-open periods, consistently for all data sets.

127 To further support this finding, we also show the distribution of the variance explained by each of
125 the principal components (PC) of the MUAe data, depicted on a log-log scale in Figure 3d. We fitted a
120 power law to the PC variances and report the exponent o (Figure 3e). A higher « indicates faster decay
130 of the curve, i.e., lower dimensionality. The power law exponents are in agreement with our sliding
131 window approach: We observe higher dimensionality during eyes-open than during eyes-closed periods
132 (Figure 3e).

133 To narrow down the reason causing the dimensionality changes, we computed v2, (N — 1)m?, and
151(N —1)s? and observed that the changes in (N — 1)m?—i.e. the average cross-covariances—dominate
135 the PR differences between the eyes-open and eyes-closed periods (Figure 3f). Thus, the main reason
136 for the observed dimensionality changes is decorrelation during the eyes-open periods.
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Figure 3: Higher dimensionality during eyes-open periods. a Log odds and participation ratio (PR) for session
L_RS_250717. The PR was calculated on a sliding window of 30 s width. b Pearson correlation between log odds
and PR. ¢ Comparison of PR between neural manifolds (Mann-Whitney U test). d Distribution of principal
components and their explained variance on a log-log scale, respectively for the entire session (L-RS_250717)
and for each manifold. Power law exponent « estimated over the ranges where the curves approximate a power
law. e Comparison of power law exponents for the two neural manifolds in all sessions. The eyes-open manifold
always had a smaller exponent, indicating a higher dimensionality. f Differences in the terms of the PR, function
between eyes-open and eyes-closed, results of Welch’s t-test across sessions shown. The quantities are related to
the standard deviation of auto-covariances (v?), average cross-covariances ((N — 1)m?), and standard deviation
of cross-covariances ((N — 1)s?)

Top-down signals from V4 to V1 are present in the form of beta-band spectral
Granger causality

137 In search of an internal mechanism that may modulate the neural manifolds and their dimensionality,
13swe turned our attention to cortico-cortical interactions. Since signatures of top-down activity have
130 previously been reported in the beta frequency band (roughly 12-30 Hz)3'%4, we use spectral Granger
140 causality to measure top-down signals.

141 To determine whether top-down signals are present in our data, we calculated the coherence and
112 Granger causality between every pair of V1-V4 and V1-DP electrodes (see Coherence and Granger
115 causality)—using the local field potential (LFP). Figure 4a,b show the coherence and Granger causalities
s for a sample pair of electrodes. To quantify the cortico-cortical signals, we searched for peaks in
115 the coherence and Granger causality, using an automatic method (see Methods, Peak detection).
116 We detected beta-frequency Granger causality peaks in around 0.5% of all V1-V4 electrode pairs,
117 predominantly in the top-down direction (Figure S13). We only found beta-band bottom-up interactions
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Figure 4: Inter-area coherence and spectral Granger causality. a Representative sample of coherence between V1
and V4 (electrodes 242 and 142, respectively). Low-frequency and beta-band peaks indicated. b Representative
sample of spectral Granger causality. ¢ Schematic representation of the electrode locations overlaid with the
mean top-down signal strength B per electrode (see Coherence and Granger causality for a description of B). d
Receptive field (RF) map overlaid with the mean B per electrode. Stronger B is found around the foveal region
of V1. e Mean B displayed against the distance from the fovea. f Log of fraction of labelled neurons (FLN)
from V4 to V1 (data from tract-tracing experiments®?®). V1 subdivisions represent c: central (foveal region), LF:
lower visual field, pc: peri-central, and fp: far periphery. The strongest connectivity exists from V4 to Vlc, in
agreement with our measurements. g Number of electrode pairs with strong (B > 10) top-down signals detected
in each session.

11sin V1-DP electrode pairs.

149 For the electrodes with a beta causality peak, we estimated the causality strength B (Equation 5).
150 The electrodes with their receptive field (RF) closer to the fovea show substantially higher B (Figure 4c—e,
151 Figure S14), in agreement with a previous structural connectivity report*® (Figure 4f). To disregard
152 potential spurious Granger causality peaks, we restrict all further analysis of the top-down signals to the
153 strongest interactions, by setting a threshold of B > 10 (Figure 4g). We found no bottom-up V1-to-V4
152 signals with high strength in the beta frequency band.

155 Thus, we found top-down signals from V4 to V1, in agreement with previous studies3"**; but we
156 did not find strong signals from DP to V1 in our data. V4-to-V1 signals are therefore strong candidates
157 for the modulation of the neural manifolds and their dimensionality.

Stronger top-down signals from V4 to V1 during eyes-open periods

155 To elucidate the behavioural relevance of the V4-to-V1 top-down signals, we examined how the spectral
150 power, coherence, and Granger causality change of the LFP in relation to eye closure.

10 We extracted the LFP data for each behavioural condition and concatenated the data within the
161 same condition. This approach could introduce some artefacts, which we expect to be minor in view
102 0f the very small number of transitions in comparison with the number of data samples (500 Hz
163 resolution). Both in V4 and V1, we find that the spectral power at low frequencies (< 12 Hz) is higher
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Figure 5: Spectral power, coherence, and Granger causality of the LFP for the electrodes with high causality
strength (B > 10) in session L_RS_250717, see Figure S15 for all other sessions. The data for each behavioural
condition (eyes-open/closed) were concatenated and their metrics reported separately. Thick line shows median
across electrodes (or pairs of electrodes) and shading indicates the 25th to 75th percentile (top row). The difference
between eyes-open and eyes-closed periods was calculated for each electrode or pair of electrodes (bottom row).

161 during the eyes-closed periods, whereas the power in the beta band (12-30 Hz) is slightly higher during
165 eyes-open periods (Figure 5, Figure S15). Spectrograms of the V1 LFP power confirm the reduction in
166 low-frequency power during eyes-open periods (Figure S17). The coherence in the beta band is higher
167 during the eyes-open periods, with the peak shifted to higher frequencies compared to the eyes-closed
16s condition. Notably, the top-down Granger causality is substantially higher in the beta band during the
160 €yes-open periods.

170 In order to confirm our observations, we also computed spectrograms of the Granger causality using
1712 10-second sliding window (Figure S16a). Statistical tests (Welch’s t-test) of the difference between
172 bottom-up and top-down Granger causality, AGC, confirmed a shift toward top-down interactions
173 during the eyes-open periods compared to the eyes-closed periods, for a vast majority of all electrode
171 pairs (Figure S16b,c). Thus, we found higher beta-band Granger causality during eyes-open periods
175 using two different approaches.

176 We further tested whether the top-down signals were correlated with gaze direction and eye
177 movements (Figure S18), to rule out the presence of any visual stimuli—despite the experiments being
17s performed in a dark room. No clear trend could be observed, thus indicating no relation between gaze
179 direction and top-down signals. This finding suggests that the visual scene is not the source of the
1s0 observed top-down signals.

181 In conclusion, the time-dependent spectral analysis reveals large variations of power and Granger
152 causality. On the one hand, the spectral power at low frequencies decreases during eyes-open periods,
155 consistent with the well-known alpha blocking phenomenon?%2%. On the other hand, the V4-to-V1
151 top-down signals are strongest during the eyes-open periods. The time-varying top-down beta causality
1s5 strength did not substantially correlate with gaze direction or eye movements, suggesting no relation
156 between the top-down signals and the visual scene; as expected in a dark room. Taken together, these
1s7 results suggest that V4-to-V1 signals modulate V1 activity, contributing to a different state-space
1ss manifold with increased dimensionality.

Discussion

10 In this paper, we presented three novel findings in the primary visual cortex (V1) of macaques during
100 the resting state: two separate manifolds in the state space associated with eye closure (Figure 2);
191 higher dimensionality due to lower mean cross-correlations during eyes-open periods (Figure 3); and the
192 presence of stronger top-down signals from V4 to V1 during the eyes-open periods, primarily targeting
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105 the foveal region of V1 (Figure 4, Figure 5). In addition, we observed lower power at frequencies
191 below 12 Hz during the eyes-open periods (Figure 5, Figure S17), consistent with the well-known alpha
195 blocking effect 2.

196 We observed that two distinct manifolds appear in the state space of macaque V1—but not V4 nor
197 DP—during the resting state for all subjects and sessions, for both MUAe and spike data (Figure 2,
105 51-S6, Figure S8), and are correlated with eye closure (Figure 2e,f). The manifolds were not just an
190 artefact of the three-dimensional projection used for visualisation, as we confirmed they also exist
200 in higher dimensions with persistent homology (Figure S7). Previous work in mice has shown that
201 the visual cortex represents a myriad of behaviours in the resting state, such as facial movements
»02or running®®. However, a similar study on the macaque showed that the macaque visual cortex is
203 very specific to vision, and minimally driven by spontaneous movements“®. Thus, we do not expect
201 the neural manifolds of V1 to be strongly affected by any behaviour other than visual behaviour, in
205 agreement with our finding that eye closure neatly explains the two manifolds.

206 Our findings could in principle explained by the presence of complex visual stimuli that would alter
207 the population dynamics and cortico-cortical communication. However, we are certain that no strong
208 visual stimuli are present in the visual field, due to the very dark environment of the recording room.
200 Additionally, we performed several analyses to control for activity levels (Figure 2 and Figure S9) and
210 gaze direction Figure S18. Furthermore, the original data for Macaques L and A includes an extensive
211 evaluation of data quality, which excluded all electrodes that did not strongly respond to visual stimuli*!.
212 Thus, all the electrodes included in our analysis (from Macaques L and A) would strongly respond if
215 there were strong visual stimuli, but we observed no such responses in the MUAe activity (see Figure 2).
214 We are therefore certain that the visual input is faint or nonexistent, which implies that the observed
215 neural manifolds must be induced by some other internal mechanism.

216 Further characterisation of the activity in the different manifolds revealed that the neural dimension-
217 ality is manifold-dependent (Figure 3). We observed higher dimensionality in the eyes-open manifolds
215 across all macaque and sessions. Our measured dimensionality is in agreement with previous reports on
210 the visual cortex %16, Previous work has also shown higher dimensionality in the primary motor cortex
220 during eyes-open than eyes-closed periods?’, analogous to our findings in the visual cortex.

221 We hypothesised that top-down signals from higher cortical areas could be the modulatory mechanism
200 responsible for the changes observed in the neural manifold and dimensionality of V1 activity. Indeed,
223 we found that there are strong top-down signals from V4 to V1 (Figure 4), targeting particularly the
221 foveal region of V1, in agreement with structural connectivity*®. We also found the top-down signals to
225 vary over time, with increased presence during the eyes-open periods (Figure 5). In agreement with
26 our findings, previous studies found that cortico-cortical top-down signals between V1 and V4 are
227 predominantly present in the beta (12-30 Hz) frequency band, while bottom-up signals between V1
»sand V4 are present in the delta/theta (< 8 Hz) and gamma (> 30 Hz) bands®"#4. In our analysis we
220 did not find any gamma band causality (Figure 4), likely because our recordings were from the deep
230 cortical layers (in macaque L and A the electrodes were 1.5 mm long, putatively recording mostly from
251 layer 5) and gamma oscillations are known to be weak in layer 5 of the visual cortex®’%. In contrast
252 to our findings, van Kerkoerle et al.? reported that top-down signals appear in the alpha (8-12 Hz)
233 frequency range. Whether the specific top-down and bottom-up frequencies generalise to the whole
251 cortex is unclear. Instead, Vezoli et al.** postulate overlapping modules of certain frequencies (alpha,
235 low-beta, high-beta, and gamma) that differ across cortical areas. Our findings are consistent with the
ssswork by Semedo et al.*?, who suggested that bottom-up signals dominate during visual stimulation
237 and top-down signals dominate in the absence of visual stimuli—mnote that in their work the eyes were
233 always open. We did not find top-down signals from DP to V1, possibly due to the electrodes used in
230 macaque Y being 1 mm long, thus likely recording from layer 4. In fact, top-down connections do not
,i0 originate in nor target layer 4 of cortex”’.
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Figure 6: Simulation of a balanced spiking neural network with top-down modulation. a Diagram of balanced
random spiking neural network. Background input is provided constantly, top-down signals are provided
intermittently. b Sample raster plots show spiking activity in the different input regimes. ¢ Time evolution of
input regimes and mean firing rate (FR). d First two principal components of the firing rate (binsize = 1 s).
Colours indicate the different input regimes. e Distribution of mean firing rate per neuron is almost identical
between the two regimes. f Mean firing rate of the 100 most active neurons. The top-down modulation changes
the mean firing rates of each neuron, in both the positive and negative directions, leading to the observed distinct
manifolds.

241 In the present study, it was not possible to test directly from the experimental data whether the
212 V4-t0-V1 signals are responsible for the modulation of V1 dynamics. Future studies could perform
213 such a test by a reversible inactivation of the V4-to-V1 pathway, such as via reducing the temperature
210 0f V45192 injecting a GABA agonist (e.g., muscimol, bicuculline)®*®> or using targeted optogenetic
215 suppression®®. These techniques have been successfully applied to study the suppression of cortico-
216 cortical communication; however, to best of our knowledge, they have not been used to study the effects
247 of macaque V4-to-V1 signals in the resting state.

248 Numerical simulations offer an alternative approach to study the effect of top-down signals in spiking
210 neural networks. We thus performed preliminary simulations of a simple spiking neuron model—of the
ssowell-known Brunel type®”—to ascertain whether V4-to-V1 signals can modulate the neural manifolds
251 (Figure 6). Modelled top-down signals, in the form of sinusoidal oscillating inhomogeneous Poisson
252 processes, led to a different neural manifold in the network activity when a subset of the network
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253 neurons was targeted (Figure 6d). These changes were not due to the increase in firing rate caused
251 by the additional top-down input, but rather due to the activation of different neuron patterns in the
255 model (Figure 6e,f). We limited the analysis of the model to the presence of neural manifolds, because
256 our model was ill-suited to study the dimensionality, given that average cross-correlation is known
»57to cancel out in balanced EI networks®®®?. Future work could use more complex models—such as
255 clustered networks %6961 —to study the effects of correlated inputs with realistic power spectra on the
250 dimensionality and elucidate whether the top-down signals can directly induce the observed increase in
260 the dimensionality during the eyes-open periods.

261 Taken together, our data analysis and simulations suggest that top-down modulation alone is
262 sufficient to cause the distinct neural manifolds in V1 activity. Nevertheless, sustaining the different V1
263 manifolds might involve additional mechanisms, such as neuromodulation or adaptation of recurrent
261 connectivity via short-term plasticity. Previous work suggests that N-methyl-D-aspartate (NMDA)
sesreceptors are central to the top-down communication from V4 to V13462, Interestingly, targeted
266 pharmacological deactivation of NMDA receptors in macaque V1 leads to the suppression of alpha
27 blocking?® and absence of decorrelation during eyes-open%; both of which are correlated with the
26s increased V4-to-V1 signals in our data. In addition, the top-down signals are not constant throughout
260 the eyes-open periods (Figure S16), but the slow timescale of the NMDA receptors could help sustain the
270 eyes-open manifold, even if the top-down input fades. Thus, we speculate that the top-down connections
271 preferentially target the NMDA receptors in V1 neurons, leading to the observed alpha blocking and
272 decorrelation. Additionally, recurrent connectivity, in the form of cell-type-specific motifs, has also
.73 been shown to constrain and control the dimensionality of brain networks>®, which could emerge in the
271 effective connectivity of the network as a result of the top-down input.
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Figure 7: Proposed communication pathways for V1 modulation via V4. a Visual input directly to V1 triggering
a cortico-cortical feedback loop. b Proprioception of eyelid muscles via the midbrain (possibly superior colliculus)
and somatosensory cortex. ¢ Cortico-cortical communication of motor commands.

o5 If the V4-to-V1 signals convey behavioural information, then how does such behavioural information
276 reach V4 in the first place? We explore the possible communication pathways that lead to the observed
277 V4-t0-V1 signals, illustrated in Figure 7. We identified three main candidates: the visual stimulus (or
o7s absence thereof) from the retina to V1; the proprioception of eyelid muscles via the somatosensory
279 cortex; and the voluntary motor commands for eye closure. The first proposed pathway involves
250 visual stimuli being transmitted from the retina to V1 via the lateral geniculate nucleus (LGN). The
2s1 absence of stimuli could be the reason for the observed changes in the V1 activity, whereas the presence
252 of visual stimuli could trigger a V1-V4 feedback loop. However, the macaques in our experiments
283 had very little to no visual input, even during eyes-open periods, since they were sitting in a dark
ssiroom. Additionally, we found no consistent difference in MUAe activity levels between the eyes-open
255 and eyes-closed manifolds (Figure 2). The second proposed pathway involves proprioception of the
256 eyelid that could inform the cortex when the eyes are closed and trigger the activity changes in V1.
»s7 Mechanoreceptors in the eyelid activate the oculomotor nerve projecting to the midbrain (possibly to
255 the superior colliculus)®, eventually entering the cortex via the somatosensory area (S1)%°. From S1
250 the signal could find its way to V1 via several cortico-cortical pathways, potentially including neurons
200 in V4; however this mechanism might be relatively slow, given the absence of direct connections from
20181 to V1 or V455, Furthermore, the shortest known S1-to-V1 cortico-cortical pathway does not involve
202 V4, rendering this pathway a rather weak candidate. The third and final proposed pathway involves
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203 voluntary eyelid closure which is initiated by the ventral motor cortex and the frontal eye field (FEF).
201 The eyelid closure and eye movements may be communicated to the visual cortex via cortico-cortical
295 connections or the superior colliculus. Given that V4 is part of the fronto-parietal network (with strong
200 FEF=V4 connections) %57 the eye movement signals could easily reach V4, which could then modulate
207 the V1 activity.

208 The hypotheses from Figure 7 are not necessarily mutually exclusive, and could all play a role in the
2090 modulation of V1 activity. To understand which pathways are most relevant to sustain the manifolds,
soowe had a closer look around the manifold transitions (Figure S19) by looking at the MUAe signals
so1at a high temporal resolution (1 kHz). For the eye-opening transitions, we observed that sometimes
502 V1 MUAe activity precedes V4 activity, in agreement with the feedback loop hypothesis (Figure 7a);
s0s whereas in other cases V4 activity precedes V1 activity, in agreement with the hypotheses shown in
s01 Figure Tb,c. In the eye-closing transitions, the activity from V1 and V4 appeared to be simultaneous.
305 The number of transitions was relatively small, which did not allow for a quantitative analysis of
s06 the transitions between the two manifolds. Further work could revisit this issue by looking at longer
so7 recordings including larger numbers of transitions between eyes-open and eyes-closed periods.

308 Given the complex mechanisms that seem to be involved in ensuring that V1 population activity
300 adjusts to eye closure, it seems likely that it has a functional benefit. First of all, if the eyes are closed,
s10no visual stimuli are processed and V1 firing rates are reduced to save energy. On the other hand,
311 when the eyes are open, higher-dimensional activity might be advantageous for better encoding visual
512 stimuli, which are know to have a high dimensionality'’. This could thus facilitate visual processing.
513 Previous work showed that spectral power in the alpha band (8-12 Hz) is inversely correlated with
512 visual recognition performance in human subjects?”5%: lower alpha power was associated with better
315 performance in a visual discrimination task. Our results suggest that the change in neural manifolds
s10 and dimensionality are directly correlated with the decrease in alpha power (Figure 5, Figure S17).
317 Future work could study the relation between the dimensionality, alpha power, and visual performance
s1:(e.g., response latency to different images) to determine the functional relevance of our findings.

319 In conclusion, we provide in vivo evidence for the modulation of neural manifolds by cortico-cortical
320 communication, which we hypothesise could enable more efficient responses to visual stimuli. Our
321 analysis and previous results suggest that the eyes-open manifold—together with the corresponding
322 dimensionality and spectral power changes—constitutes a visual stand-by mode, which is modulated by
323 top-down input from V4 and other internal mechanisms.
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Methods

Electrophysiological data from macaques L & A

121 We used publicly available! neural activity recorded from the neocortex of rhesus macaques (N=2) during
s2s rest and a visual task. The macaques were implanted with 16 Utah arrays (Blackrock microsystems),
326 two of them in visual area V4 and the rest in the primary visual cortex (V1), with a total of 1024
so7 electrodes. The electrodes were 1.5 mm long, thus recording from the deeper layers, likely layer 5. The
328 recording system recorded the electric potential at each electrode with a sampling rate of 30 kHz. A
a20 full description of the experimental setup and the data collection and preprocessing has already been
530 published *!; here we only provide the details relevant to this study.

331 Three resting-state (RS) sessions were recorded per macaque, during which the subjects did not
332 have to perform any particular task and sat in a quiet dark room. Pupil position and diameter data
333 were collected using an infrared camera in order to determine the direction of gaze and eye closure of
331 the macaques. On the same days as the RS recordings, a visual response task was also performed. The
335 visual response data were used to calculate the signal-to-noise ratio (SNR) of each electrode, and all
s36 electrodes with an SNR lower than 2 were excluded from further analysis. Additionally, we excluded
ss7up to 100 electrodes that contributed to high-frequency cross-talk in each session, as reported in the
sss original data publication. The sessions, duration and number of electrodes per subject are listed in
30 Table 1.

s10 The raw neural data were processed into the multi-unit activity envelope (MUAe) signal and local
s11 field potential (LFP). To obtain MUAe data, the raw data were high-pass filtered at 500 Hz, rectified,
312 low-pass filtered at 200 Hz, and downsampled to 1 kHz. Finally, the 50, 100, and 150 Hz components
313 were removed with a band-stop filter in order to remove the European electric grid noise and its main
s1a harmonics. During the recordings, the macaque’s head was held in position with a custom-made
315 headstage. To obtain the LFP data, the raw data was low-pass filtered at 250 Hz, downsampled to 500
316 Hz and a band-stop filter was applied to remove the European electric grid noise (50, 100, and 150 Hz).
si7 - The MUAe and LFP data for each array were already provided by the original authors in the
313 open-source .nix format, which uses python-neo data structures to hierarchically organise and annotate
310 electrophysiological data and metadata. The metadata, such as the cross-talk removal or the positions
s50 of the arrays in the cortex, were provided in the .odml machine- and human-readable format, which
351 were incorporated into the python analysis scripts.

Spike sorting

552 The raw data from one session (L_RS_250717) were spike-sorted using a semi-automatic workflow with
155 Spyking Circus—a free, open-source, spike-sorting software written entirely in Python%’. An extensive
351 description of the methods of this algorithm can be found in their publication, as well as in the online
155 documentation of Spyking Circus!.

356 Roughly, Spyking Circus first applied a band-pass filter to the raw signals between 250 Hz and 5
s57 kHz. Next, the median signal across all 128 channels that shared the same reference (2 Utah arrays) was
a5 calculated and subtracted, in order to reduce cross-talk and movement artefacts. The spike threshold was
350 set conservatively, at eight times the standard deviation of each signal. After filtering and thresholding,
s60 the resulting multi-unit spike trains were whitened—removing the covariance from periods without
361 spikes to reduce noise and spurious spatio-temporal correlations. After whitening, a subsample of all
362 spike waveforms is selected, reduced to the first five principal components, and clustered into different
363 groups with the k-medians method. Finally, all spikes in each electrode are assigned to one of the
sss waveform clusters based on a template fitting algorithm, which can also resolve overlapping waveforms.
365 After the automatic sorting, the waveform clusters were manually merged and labelled as single-unit
s66 activity, multi-unit activity, or noise. Only single-unit activity (SUA) spike trains were included in this
so7 study. The waveform signal-to-noise ratio (wiSNR) was calculated for all SUA, and those with a wiSNR,
s6s < 2 or electrode SNR < 2 (from the visual response task) were excluded from the analysis.

lspyking-circus.readthedocs.io
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Table 1: Summary of subjects and recordings included in this study.

Clean
Subject Session Duration (s) Areas Electrodes Electrodes
L L_RS_250717 1363 V1 896 765
V4 128 116
L L_RS_090817 1321 Vi 896 761
V4 128 116
L L_RS_100817 1298 V1 896 774
V4 128 118
A A_RS_150819 2278 Vi1 896 402
V4 128 11
A A_RS_160819 2441 V1 896 369
V4 128 9
Y Y_RS_180122 906 Vi1 64 42
DP 36 25
Y Y_RS_180201 699 V1 64 44
DP 36 24

Electrophysiological data from macaque Y

s60 In addition to the published data from macaques L & A, we also used an unpublished data set from one
s70 additional rhesus macaque (N=1). Neural activity was recorded during rest and during a visuomotor
571 integration task. The recording apparatus is described elsewhere??. The macaque was implanted with
s7 five Utah arrays (Blackrock microsystems), two of them in the primary visual cortex (V1), one in dorsal
s7s prelunate cortex (area DP), one in area 7A and one in the motor cortex (M1/PMd). In this study we
s7oonly included the 6x6 electrode arrays from V1 (two arrays) and DP (one array), for a total of 108
a7s electrodes. The electrodes were 1 mm long, thus recording from the central layers, likely layer 4. The
s7e recording system recorded the electric potential at each electrode with a sampling rate of 30 kHz.

377 Two resting-state (RS) sessions were recorded, during which the macaque did not have to perform
s7s any particular task and sat in a quiet dark room. Pupil position and diameter data were collected using
s7o an infrared camera in order to determine the gaze direction and eye closure of the macaque. See Table 1
sso for an overview of the sessions used in this study.

381 MUAe and LFP signals were computed using the same procedure as for the other data sets.

Neural manifolds and clustering

332 The MUAe data were downsampled to 1 Hz and arranged into a single array, with between 50 and 900
az3 recording locations per session.

384 In order to visualise the data, we used a standard dimensionality reduction technique (principal
355 component analysis, PCA) to reduce the neural manifold to 3D. The clusters observed in the RS sessions
sso were labelled using a two-component Gaussian mixture model on the 3D projection. The clustering
ss7 method provides the log odds, i.e., the chance that any given point belongs to one cluster or the other.
338 The log odds captures the multi-cluster structure of the manifold in a single time series; thus, we
sso consider it to be an identifier of the V1 manifolds.

Outlier removal

300 The neural manifolds in our analysis are a collection of time points scattered across the state space. In
01 the data some time points appear very distant from all other points, which we associate with noise and
302 we therefore seek to remove them. To identify the outliers we used a procedure similar to the one used
505 by Chaudhuri et al.®. First, we calculated the distance matrix of all points to each other, and took the
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301 1st percentile value from the distance distribution, D;. We then estimated the number of neighbours
s05 that each point had within D; distance, and finally discarded the 20 percent of points with the fewest
06 neighbours.

Topological data analysis

307 We used persistent homology to confirm that the lower-dimensional structures that we observed in the
308 3D projection of the neural manifolds are in fact topological features of the data and not just an artefact
390 of the dimensionality reduction. Before computing the persistence barcodes we projected the data into a
100 10D subspace using the isomap technique . The method aims at approximately preserving the geodesic
w01 distance between data points (that is the shortest path between two points on the neural manifold) and
102 thus is suited for reducing the dimensionality of the data when applying a topological data analysis.
103 The analysis on the 10D data showed qualitatively equivalent results to the full-dimensional data, while
104 requiring a much shorter computation time.

105 To calculate the persistence barcodes of the Vietoris-Rips complex of the neural manifold we used
s an efficient open-source implementation (Ripser?). Briefly, the algorithm successively inflates balls
w7 with radius r around each point of the manifold. If £ points have a pairwise distance smaller than r
w05 (that is, for all pairs of points both points are contained in the ball of the other point), they form a
109(k — 1)D simplex. Thus, the neural manifold gives rise to a simplicial complex (a collection of simplices
110 of potentially different dimension) the topological features of which represent the topology of the neural
411 manifold and can be extracted computationally. As r is increased, many short-lived features appear by
112 chance. If the manifold has complex topological structures, they should continuously appear as the
11z radius of the balls grows for a large range of r. We computed the persistence barcode for the first three
112 homology groups Hy, H; and H;. Homology groups are topological invariants that capture topological
115 features of a given dimension of the neural manifold. The long-lasting bars in the n-th persistence
116 barcode correspond to the number of independent generators 3, of the respective homology group H,.
117 For low dimensionalities, they can be interpreted intuitively: fy is the number of connected components,
115 81 the number of 1D holes, 82 the number of enclosed 2D voids. Throughout all plots of this paper we
1o display the top 1% longest-lasting barcodes for each homology group.

Dimensionality

120 We used two different approaches to study the dimensionality of the neural data.

121 First, we compute the time-varying participation ratio (PR, Equation 1) from the covariance matrix.
122 We take a 30 s sliding window with a 1 s offset over the MUAe data and compute the PR for each
23 window separately. Higher activity leads to higher variance; thus, we normalised the data within each
szawindow via z-scoring to minimise this effect. The PR does not require setting an arbitrary threshold.
125 From the time-varying PR we measured the correlation between the log odds and the PR, and the PR
126 distribution in each manifold.

127 Second, we computed the eigenvalue distribution of the neural data for the entire session as well as
12s within each manifold. Once again we normalised the data after sampling each manifold. The distribution
120 appeared to follow a power law, in agreement with previous studies'’. We used a linear regression
130in log-log space to fit a power law to our data, where the slope of the linear fit in the log-log plot
131 corresponds to the exponent « of the power law.

Coherence and Granger causality

132 To estimate the communication between cortical areas we rely on the coherence and Granger causality.

133 Coherence is the quantification of linear correlations in the frequency domain. Such that
|Say (f)[?
Coy(f) = —F 75— 2

https:/ /pypi.org/project /ripser/
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isiwhere Cyy is the frequency (f) dependent coherence between two signals z and y, Sgy(f) is the
155 cross-spectral density, and Sy, (f) and Sy, (f) are the auto-spectral densities.

436 In order to assess the directionality of frequency dependent interactions between the areas we applied
157 spectral Granger causality analysis to the LEP recordings’'. We first computed the cross-spectral
s matrix S(f) with the multitaper method. To this end, we subdivided the chosen signal pairs into
13910 s long segments. These were processed individually with 3 Slepian tapers and averaged in the end.
110 This yielded the cross-spectrum. The segments had an overlap of 50%. Next, we decomposed the
111 cross-spectrum into the covariance matrix ¥ and the transfer function H(f) with the Wilson spectral
1> matrix factorisation’?, obtaining the matrix equation

S =H(f)SH'(f). (3)

113 With these factors, one is able to obtain a version of directional functional connectivity between the
1 first and second signals via
Sz (f
ch—>y(f) = = xx( )

Hoo(f) S0 Hi (f)

115 where ]:Im(f) = Hyo(f) + Xy /X Haey(f) and mutatis mutandis for the influence of the second onto
16 the first signal. The analysis was performed for all pairs of channels between the areas that exhibited a
117 peak in the coherence in the 8 band 12 Hz < f < 30 Hz.

s We quantify the beta-band Granger causality strength as

(4)

=30 Hz

B= Y GCary(f) = GCoy(f). (5)

f=12 Hz

1o We also analysed the time-varying spectral Granger causality. For this aim we used 10 s windows
150 and moved them across the data with 1 s steps, for a final time resolution of 1 Hz. We calculated the
151 spectral Granger causality for each window separately. The initial and final 5 s were discarded to avoid
152 disruptions at the boundaries. So the time-varying causality spectrogram is

GCyrsy(t, f) = GCyuy(f) s, GGy (f) (6)

[t07t1} [tnfl,tn]
153 and mutatis mutandis for the y — « direction.
154 Finally, we also define the time-varying Granger causality difference

AGC(t, f) = GCyry(t, f) — GCoy(t, ), (7)
155 which summed over the beta band we call

f=30 Hz

B(t)= Y AGC( f). (8)

f=12 Hz
156 Note that

N
ZB(ti)
B # ZT (9)

157 due to the nonlinearities in the Granger causality calculation.
458 Both the coherence and spectral Granger causality were implemented in the Electrophysiology
150 Analysis Toolkit (Elephant) .
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Peak detection

Table 2: Peak detection algorithm parameters.
CWT peak detection parameters

widths 100 — 500 Hz | Width range for CWT matrix.

width_step 0.1 Hz Step between widths.

wavelet Ricker Wavelet used for convolution.

max_distances | widths / 4 Criterion to consider ridge lines connected.

gap_thresh 10 Hz Ridge lines farther apart will not be connected.
min_length 225 Minimum length of ridge lines.

min_snr 1 Minimum snr of ridge lines.

noise_perc 10 Percentile of ridge line considered noise for snr calculation.

10 To detect coherence peaks we used a standard peak detection algorithm for 1D arrays using wavelet
161 transforms. We computed the continuous wavelet transform (cwt) for wavelets with widths from 10 Hz
12t0 100 Hz (at 0.1 Hz steps), using a Ricker wavelet—i.e., a Mexican hat. Next, we searched for ridge
i6s lines in the cwt—peaks across different wavelet lengths—following standard criteria”™. Finally, the
wiridge lines were filtered based on their total length, gaps, and signal-to-noise ratio (snr). The resulting
w5 ridge lines (if any) were considered as peaks in the coherence.

166 The detected peaks tended to be broad, since our parameter choice intentionally rejected narrow
167 peaks. We chose this configuration in favour of robustness and to minimise false positives. Nevertheless,
1ss peaks were detected for a majority of electrode pairs.

Spiking neural network simulations

Table 3: General model description
Model Summary

Populations
Connectivity
Neuron model
Synapse model

Input

two populations, one excitatory, one inhibitory
random connectivity

leaky integrate-and-fire model

exponential postsynaptic current

independent spike trains from inhomogeneous
Poisson processes with given rate r(t)

Neuron and synapse model

Subthreshold dynamics

Spiking

v _ vV

i = Tm Cp
Ty (t) = Je= U=/ Tun [ (1 — t* — d)

If V(t—) < 0 and V(t+) > 6,

1. Set t* =t and V(t) =V, and

2. Emit spike with time stamp t*.

Lsyn (1)

Connectivity

Type

Weights

Delays

pairwise Bernoulli,
i.e., for each pair of neurons generate a
synapse with probability p

fixed source- and target-population-specific weights

log-normally distributed delays for
excitatory and inhibitory neurons

Input

Background
Top-down modulation

r(t) = max(0, V}Efse + V;)I%p . sin(271’fbg -t))

T(t) - maX(O, Vggse + V;ﬂlp i sin(27rftd i t))
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169 To investigate the hypothesis that top-down signals in the -band induce a change in the population
170 dynamics and dimensionality, we conducted a spiking neural network simulation. The network consists
ar1of 10,000 excitatory and 2,000 inhibitory leaky integrate-and-fire (LIF) neurons with exponential
172 post-synaptic currents. Pairs of neurons are randomly connected with a connection probability of
173 p = 0.1. The spike transmission delay is randomly sampled following a log-normal distribution. Generally
171 speaking, the simulation experiments consist of two parts corresponding to the two states observed in the
a5 neuronal activity. In the first state (background state), the input consists of spike trains sampled from
176 an inhomogeneous Poisson process with a baseline rate of 14,, Hz that is modulated with a 1Hz sinusoidal
177 oscillation. In the second state, the network additionally receives input spike trains from inhomogeneous
17s Poisson processes with rates oscillating at 20 Hz. The first state represents the eyes-closed, the second
179 the eyes-open condition. Both input regimes provide independent input to each neuron, based on
is0 the same rate profiles. During the simulation, we recorded the spiking activity of 1,000 excitatory
is1and 200 inhibitory neurons. We provided the top-down modulation to a subset of the neurons in the
22 network. We targeted 50% of both the excitatory and inhibitory population. During the simulation, we
153 distinguish two manifolds corresponding to the eyes-open and eyes-closed periods during the recordings.
151 See Table 3, Table 4 for a full description of the network and the experiments. For the simulations we
w5 used NEST (version 3.3) 7.
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Table 4: Simulation parameters.
Population Parameters

Nex 10,000 number of excitatory neurons
Nin 2,000 number of inhibitory neurons
Connectivity Parameters
P 0.1 connection probability
Neuron parameters
Tm 20 ms membrane time constant
Ty 2 ms absolute refractory period
Tsyn 2 ms postsynaptic current time constant
Chn 250 pF membrane capacity
Vi 0mV resting potential
b, 0mV membrane capacity
Vieset | 0 mV reset membrane potential
Vin 20 mV threshold
Stimulus parameters: Background
VEES . | 8682 spikes/s | baseline rate
y;?r%lp 2170 spikes/s | amplitude
f 10 Hz sinusoidal oscillation frequency
Stimulus parameters: Top-down signal
Vﬁise 0 spikes/s base line rate
vl | 723 spikes/s | amplitude
f 20 Hz sinusoidal oscillation frequency
ptd 0.5 fraction of neurons targeted by top-down
modulation in setup 1 and 3
ptd 1 fraction of neurons targeted by top-down
modulation in setup 2
Synapse parameters
JEE 6.4 pA synaptic efficacy excitatory to excitatory
JIE 9.5 pA synaptic efficacy excitatory to inhibitory
g 4 relative inhibitory synaptic efficacy
JEI —gx*xJgg synaptic efficacy inhibitory to excitatory
Jn —g*Jgg synaptic efficacy inhibitory to inhibitory
Delay parameters
Hex 1.5 ms mean of lognormal distribution
for excitatory connections
Min 0.75 ms mean of lognormal distribution
for inhibitory connections
Oex,in | 0.5 ms standard deviation of lognormal
distribution for all connections
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Extended data figures
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Figure S1: Overview of the experimental data from session L_RS_090817. a Time evolution of signals. b, ¢, d
First three principal components of the MUAe neural manifold.
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Figure S2: Overview of the experimental data from session L_RS_100817. a Time evolution of signals. b, c, d
First three principal components of the MUAe neural manifold.
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Figure S3: Overview of the experimental data from session A_RS_150819. a Time evolution of signals. b, ¢, d
First three principal components of the MUAe neural manifold.
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Figure S4: Overview of the experimental data from session A_RS_160819. a Time evolution of signals. b, ¢, d
First three principal components of the MUAe neural manifold.
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Figure S6: Overview of the experimental data from session Y_RS_180122. a Time evolution of signals. b, ¢, d
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Figure S7: Persistence homology of the high-dimensional manifolds show the presence of at least two clusters.
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Number of clusters found in each session.
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Figure S8: Overview of the spiking data from session L_RS_250717. Single neurons were isolated using a
semi-automatic spike sorting method, see Methods, Spike sorting. The firing rate (FR) was calculated counting
the number of spikes in 1-second bins. a Sample spike raster plots for eyes-open and eyes-closed periods. b
Sample waveforms from four electrodes, multiple single units isolated in some electrodes (colour-coded). Median
(solid line) and 20-80 percentiles (shading) shown per unit. ¢ Time evolution of signals. d, e, f First three
principal components of the firing rate (FR) neural manifold. Insets show the persistent homology for the Hy
homology group (e) and the violin plots of the eye closure against the clustering log odds (f).
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Figure S9: 2D histograms of z-scored MUAe and log odds. Darker colour indicates higher occurrence. If the
neural manifolds were solely explained by the higher activity, the histograms should be strictly diagonal; we
instead observe that the histograms spread across multiple quadrants and are even bimodal in some cases.
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Figure S10: V4 activity from session L_RS_250717 does not show distinct clusters in its neural manifold. a Time
evolution of signals. b, ¢, d Three dimensional PCA of the MUAe neural manifold.
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Figure S11: DP activity from session Y_RS_180201 does not show distinct clusters in its neural manifold. a
Time evolution of signals. b, ¢, d Three dimensional PCA of the MUAe neural manifold.
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Figure S12: V4 and DP manifold log odds are not strongly correlated with eye closure nor with MUAe. a, b
Violin plots of V4 and DP for eye closure (a) and MUAe activity (b). Neither show a clear separation along
different neural manifolds.
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Figure S13: Quantification of coherence peaks and beta-band spectral Granger causality. a Quantification of
coherence peaks across all sessions. A substantial portion of all electrode pairs displayed a beta peak. Note
that the percentages for a session can add up to more than 100% since the same electrode pair can have both a
low-frequency and a beta peak. b Quantification of beta-band spectral Granger causality for all sessions. Welch’s
t-test was used to determine whether top-down Granger causality was greater than, less than, or roughly equal to
bottom-up Granger causality, within the beta frequency band. The test was only applied to those electrode pairs
that showed a beta coherence peak. A large portion of V1 & V4 pairs show stronger causality in the top-down
direction, while V1 & DP did not appear to have prominent top-down causality compared to bottom-up causality.
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Figure S14: Spatial distribution of Granger causality strength per electrode for all relevant sessions. (Left
column) Schematic representation of the electrode locations overlaid with the mean top-down signal strength B
per electrode (see Coherence and Granger causality for a description of B). (Center column) Receptive field (RF)
map overlaid with the mean B per electrode. Stronger B is found around the foveal region of V1. (Right column)

Mean B displayed against the distance from the fovea.

34


https://doi.org/10.1101/2023.06.14.544966

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.14.544966; this version posted June 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

L_RS_090817
Granger Causality Granger Causality
V4 Power Coherence V4 < V1 V4 -V1 V1 Power
107" —— Eyes-closed 0.6 0.15 02
- Eyes-open
10—2 4 P 0.4 0.10 01
107 02 O'OSW
10—4 0.0 0.00 0.0

BN

20 40

Difference
o

0.2
0 20 40 0 20 40 0 20 40 0 20 40
f (Hz) f (Hz) f (Hz) f (Hz)
L_RS_100817
Granger Causality Granger Causality
V4 Power Coherence V4 «<V1 V4 -V1 V1 Power
0.2
10”" — Eyes-closed 0.6 02
— Eyes-open
10_2 04 0.1 0.1
10-3 0.2 = $
10—4 0.0 0.0 0.0
o 00
(&)
C
O 0.1
g "
[a ) 20 40
0 20 40 0 20 40 0 20 40 0 20 40
f (Hz) f (Hz) f (Hz) f (Hz)
A_RS_150819
Granger Causality Granger Causality
V4 Power Coherence V4 < V1 V4 -V1 V1 Power
G | \ A 010 107"
107 107
0.05 01
10° 02 10°
107 0.0 0.00 0.0 1074
8 0.00 —
C
o 10\ 10_
L 005} [ 1078 107
a 10 T —40 105 40
-0.10+
0 20 40 20 40
f (Hz) f (Hz) f (Hz) f (Hz) f (Hz)

Figure S15: Spectral power, coherence, and Granger causality for the electrodes with high causality strength
(B > 10) in sessions L_RS_090817, L_RS_100817, and A_RS_150819. The data for each behavioural condition
(eyes-open/closed) were concatenated and their metrics reported separately. Thick line shows median across
electrodes (or pairs of electrodes) and shading indicates the 25th to 75th percentile (top row for each session).
The difference between eyes-open and eyes-closed was calculated for each electrode or pair of electrodes (bottom
row for each session).
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Figure S16: Time-dependent spectral Granger causality reveal higher top-down signals in the eyes-open periods.
a Time evolution of the log odds (top), and the spectral Granger causality difference for a representative sample
of V1-V4 electrodes (bottom). The sample electrodes were the same as in Figure 5. b Causality difference median
(line) and 25th to 75th percentiles (shade) in each manifold for one sample V1-V4 electrode pair. Beta frequency
range highlighted. ¢ Quantification of beta-band causality difference B(t) over time (in each manifold) for all
V1-V4 and V1-DP electrodes in all sessions—using Welch’s t-test.
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Figure S17: Analysis of the V1 LFP spectrogram. a Log odds identifying the neural manifolds (as in Figure 2a),
and time-varying spectrum of a sample V1 electrode (session L_RS_250717, power normalised for each frequency).
b Spectrum of a sample V1 electrode (session L_RS_250717). Colours indicate the different manifolds. ¢ Result of
t-test in the low frequency band (less than 12 Hz) for all V1 electrodes. As expected, the overwhelming majority
of electrodes displays higher low frequency power when the eyes are closed.
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Figure S18: Top-down signals are not correlated with gaze direction. a Sample traces of the mean beta-band
Granger causality difference, gaze direction (Eye X, Eye Y), and gaze direction derivative (AX, AY). b Sample
beta causality difference over the gaze locations. Higher top-down causality is not concentrated in particular
regions. ¢ Histograms of Pearson correlation coefficients between time-dependent causality difference and gaze
signals, computed for all electrode pairs in all sessions. Significant (p < 0.01 two-tailed) part of histograms shown
in orange. Gaze direction derivatives show no significant correlations. Note that we did not correct for multiple
testing, since reducing the p-value threshold would simply reinforce our finding that no strong correlation was
present between the gaze and the top-down signals; i.e., no multiple testing correction was the more conservative
approach in this case. d Scatter plot of the summed time-independent causality difference against the correlation
with gaze direction. There is no clear relation between B(t)-gaze correlation and causality strength.

37


https://doi.org/10.1101/2023.06.14.544966

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.14.544966; this version posted June 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Logl Logl
odds} oddst
Xpos| ————— xpos|  ——
ypos| — ypos| _
V1 V1
Ty
V4 I V4 l
—V1 —V4 —V1 —V4
avg 1 avg 1
MUAeOMW MUAe 0 |M"’b\¢mﬂun
1 1
696.0 696.5 697.0 697.5 1223.0 1223.5 1224.0 1224.5 1225.0
t(s) t(s)
Log 2
odds o] VY 2 S
: [ =
| 07T
V1 500 | o)
Electrodes ' 28
(]
0 N
0 200 400 600 800 000 1200
t(s)
Log} Log}
odds odds
Xpost — xpos|
ypos| ———— ypos|—
V1 VA1
V4 | V4 |
; —Vi —V4 ’ —V1 —V4
avg avg
MUAeO.‘mM-qM“ MUAe 0
-1 1
146.5 147.0 147.5 148.0 980.0 980.5 981.0 981.5 982.0 9825 983.0
t(s) t(s)

Eyes closing

Figure S19: Closer look at the V1 and V4 MUAe around the transitions between the two manifolds in session
L_RS_250717.

38


https://doi.org/10.1101/2023.06.14.544966

