001009717 001__ 1009717
001009717 005__ 20231023093624.0
001009717 0247_ $$2doi$$a10.1088/1361-6560/acec2c
001009717 0247_ $$2ISSN$$a0031-9155
001009717 0247_ $$2ISSN$$a1361-6560
001009717 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02949
001009717 0247_ $$2pmid$$a37524092
001009717 0247_ $$2WOS$$aWOS:001049369900001
001009717 037__ $$aFZJ-2023-02949
001009717 082__ $$a530
001009717 1001_ $$00000-0002-5381-015X$$aMiranda, Alan$$b0$$eCorresponding author
001009717 245__ $$aCorrection of motion tracking errors for PET head rigid motion correction
001009717 260__ $$aBristol$$bIOP Publ.$$c2023
001009717 3367_ $$2DRIVER$$aarticle
001009717 3367_ $$2DataCite$$aOutput Types/Journal article
001009717 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695976325_20236
001009717 3367_ $$2BibTeX$$aARTICLE
001009717 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009717 3367_ $$00$$2EndNote$$aJournal Article
001009717 520__ $$aIn positron emission tomography (PET) rigid motion correction, erroneous tracking information translates into reduced quality in motion corrected reconstructions. We aim to improve the accuracy of the motion tracking data, to improve the quality of motion corrected reconstructions.We developed a method for correction of marker/skin displacement over the skull, for tracking methods which require multiple markers attached on the subject head. Additionally, we correct for small magnitude (~1 - 2 mm) residual translation tracking errors that can still be present after other corrections. We performed [18F]FDG scans in awake mice (n = 8) and rats (n = 8), and dynamic [18F]SynVesT-1 scans in awake mice (n = 8). Head tracking was performed with the point source tracking method, attaching 3 to 4 radioactive fiducial markers on the animals' heads. List-mode even-by-event motion correction reconstruction was performed using tracking data obtained from the point source tracking method (MC), tracking data corrected for marker displacement (MC-DC), and tracking data with additional correction for residual translation tracking errors (MC-DCT). Image contrast, and the image enhancement metric (IEM, with MC as reference) were calculated in these 3 reconstructions.In mice [18F]FDG scans, the contrast increased on average 3% from MC to MC-DC (IEM: 1.01), and 5% from MC to MC-DCT (IEM: 1.02). For mice [18F]SynVesT-1 scans the contrast increased 6% from MC to MC-DC (IEM: 1.03), and 7% from MC to MC-DCT (IEM: 1.05). In rat [18F]FDG scans contrast increased 5% (IEM: 1.04), and 9% (IEM: 1.05), respectively.The methods presented here serve to correct motion tracking errors in PET brain scans, which translates into improved image quality in motion corrected reconstructions.
001009717 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001009717 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009717 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b1$$ufzj
001009717 7001_ $$0P:(DE-Juel1)177960$$aSchweda, Vanessa$$b2$$ufzj
001009717 7001_ $$0P:(DE-HGF)0$$aStaelens, Steven G$$b3
001009717 7001_ $$0P:(DE-HGF)0$$aVerhaeghe, Jeroen$$b4
001009717 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/acec2c$$p175009$$tPhysics in medicine and biology$$v68$$x0031-9155$$y2023
001009717 8564_ $$uhttps://juser.fz-juelich.de/record/1009717/files/Miranda_2023_Phys._Med._Biol._68_175009.pdf$$yOpenAccess
001009717 909CO $$ooai:juser.fz-juelich.de:1009717$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001009717 9101_ $$0I:(DE-HGF)0$$60000-0002-5381-015X$$aExternal Institute$$b0$$kExtern
001009717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b1$$kFZJ
001009717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177960$$aForschungszentrum Jülich$$b2$$kFZJ
001009717 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001009717 9141_ $$y2023
001009717 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
001009717 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-17
001009717 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
001009717 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009717 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009717 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
001009717 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001009717 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001009717 920__ $$lyes
001009717 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
001009717 980__ $$ajournal
001009717 980__ $$aVDB
001009717 980__ $$aUNRESTRICTED
001009717 980__ $$aI:(DE-Juel1)INM-2-20090406
001009717 9801_ $$aFullTexts