001009718 001__ 1009718
001009718 005__ 20230929112542.0
001009718 0247_ $$2doi$$a10.1107/S1600576723005174
001009718 0247_ $$2ISSN$$a0021-8898
001009718 0247_ $$2ISSN$$a1600-5767
001009718 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02950
001009718 0247_ $$2pmid$$a37555218
001009718 0247_ $$2WOS$$aWOS:001046279800035
001009718 037__ $$aFZJ-2023-02950
001009718 041__ $$aEnglish
001009718 082__ $$a540
001009718 1001_ $$0P:(DE-HGF)0$$aLanders, David$$b0$$eCorresponding author
001009718 245__ $$aTEMGYM Basic: transmission electron microscopy simulation software for teaching and training of microscope operation
001009718 260__ $$a[Erscheinungsort nicht ermittelbar]$$bWiley-Blackwell$$c2023
001009718 3367_ $$2DRIVER$$aarticle
001009718 3367_ $$2DataCite$$aOutput Types/Journal article
001009718 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692347371_8449
001009718 3367_ $$2BibTeX$$aARTICLE
001009718 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001009718 3367_ $$00$$2EndNote$$aJournal Article
001009718 520__ $$aAn interactive simulation of a transmission electron microscope (TEM) called TEMGYM Basic is developed here, which enables users to understand how to operate and control an electron beam without the need to access an instrument. TEMGYM Basic allows users to familiarize themselves with alignment procedures offline, reducing the time and money required to become a proficient TEM operator. In addition to teaching the basics of electron beam alignments, the software enables users to create bespoke microscope configurations and develop an understanding of how to operate the configurations without sitting at a microscope. TEMGYM Basic also creates static ray diagram figures for a given lens configuration. The available components include apertures, lenses, quadrupoles, deflectors and biprisms. The software design uses first-order ray transfer matrices to calculate ray paths through each electron microscope component, and the program is developed entirely in Python to facilitate compatibility with machine-learning packages for future exploration of automated control.
001009718 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001009718 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
001009718 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001009718 7001_ $$0P:(DE-HGF)0$$aClancy, Ian$$b1
001009718 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b2
001009718 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b3
001009718 7001_ $$0P:(DE-HGF)0$$aStewart, Andrew$$b4$$eCorresponding author
001009718 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576723005174$$gVol. 56, no. 4, p. 1267 - 1276$$n4$$p1267 - 1276$$tJournal of applied crystallography$$v56$$x0021-8898$$y2023
001009718 8564_ $$uhttps://juser.fz-juelich.de/record/1009718/files/yr5104.pdf$$yOpenAccess
001009718 909CO $$ooai:juser.fz-juelich.de:1009718$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001009718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b2$$kFZJ
001009718 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
001009718 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001009718 9141_ $$y2023
001009718 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001009718 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001009718 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-22$$wger
001009718 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001009718 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001009718 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001009718 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2022$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001009718 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ APPL CRYSTALLOGR : 2022$$d2023-08-25
001009718 920__ $$lyes
001009718 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001009718 980__ $$ajournal
001009718 980__ $$aVDB
001009718 980__ $$aUNRESTRICTED
001009718 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001009718 9801_ $$aFullTexts