
Spatial Consistent Clusters in 3D

Volume renderings of clusters demonstrate their spatial consistency across 
sections and highlight certain fiber configurations:

• Cross section consistency as mean IoU of 
agglomerative cluster assignments between 
neighboring sections.

• Clusters of SSL features have higher 
consistency compared to clusters of 3D-PLI 
parameter histograms.

• Steep fibers or crossings (5, 9)
• Roughly the SS and surrounding fibers (6)
• Layers IVb - VI of primary visual area V1 

(8)

• Flat HM (1)
• Tangential cut LM  (2, 7) 
• Inner cortical layers (3)
• Outer cortical layers (4)

Hierarchical Clustering
We first reduce 16M data points to 128 k-Means centroids. 
The centroids serve as the basis to calculate a 
dendrogram using agglomerative clustering.

Left: Dendrogram of clusters getting merged shows 
hierarchy of clusters

Bottom: Agglomerative clustering results of the initial 128 
k-Means centroids for 2, 5 and 9 clusters
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Conclusions
The proposed method enables the extraction of features that are sensitive 
to different configurations of fiber architecture observed in 3D-PLI and 
form spatially consistent clusters. It can directly be applied to 3D 
reconstructions of other brain regions, species, and modalities. Future work will 
explore how the features can be used for data-driven analysis and segmentation 
of fiber structures.

Introduction

We analyze a stack of 234 coronal 
sections of the right occipital pole 
of a Vervet monkey brain. All 
sections were  aligned to their 
blockface images [2] using non-linear 
deformation fields.

Vervet Monkey Occipital Pole
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PCA

Project learned features onto 12 PCA components with 60% explained variance. 
The maps of projections highlight fundamental anatomical principles:

• Stratum sagittale (SS)
• U-fibers
• Tangential cut LM
• Flat fiber bundles
• Steep fibers/ crossings

•Low/high myelination (LM, HM)
•Primary visual area (V1)
•Cortical layer I
•Stria of Gennari
•Stratum calcarinum (SC)

3D-PLI
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Human brain organization encompasses distinct structural and functional 
organizing principles, including fiber architecture [1]. Three-dimensional polarized 
light imaging (3D-PLI) [2] is capable of revealing fine-grained nerve fiber 
structures in whole brain sections. Manual analysis of 3D-PLI provide an accurate 
description of fiber architecture [5,6], but are very time consuming. Here, we build 
on recent advances in self-supervised learning (SSL) to extract features 
from 3D-PLI in a fully data-driven way. We show that such SSL features allow 
to identify certain nerve fiber configurations in 3D-PLI images and fall into 
clusters of characteristic fiber architecture.

•Build on SimCLR [3] contrastive learning framework
•Utilize 3D context of sections from the reconstructed 3D-PLI volume
•Use 3D-PLI specific data transformations T
•Reduced ResNet-50 [4] extracts 256 features hi for patches of 166µm

3D Context Contrastive Learning

3D-PLI measures maps of

• Transmittance IT
• Direction φ
• Retardation sin(δ)

The Fiber orientation 
displays Direction and 
Inclination (derived from 
Retardation) in HSV color 
space.


