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Abstract
The link between bipolar disorder (BP) and immune dysfunction remains controversial. While
epidemiological studies have long suggested an association, recent research has found only limited
evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant
genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we
assessed the association of a large collection of immune-related genes (4,925) with Li response, defined
by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical
characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N 
= 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related
traits and evaluated their associations with Li response and clinical features. We found several genes
associated with Li response at p < 1x10− 4 values, including HAS3, CNTNAP5 and NFIB. Network and
functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion
and intercellular communication, which appear to converge on the well-known Li-induced inhibition of
GSK-3β. We also found various genes associated with BP’s age-at-onset, number of mood episodes, and
presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These
included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP,
TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li
response and clinical presentation. Taken together, our results support the notion of a relatively weak
association between immunity and clinically relevant features of BP at the genetic level.

INTRODUCTION
Bipolar disorder (BP) has been associated with some degree of immune dysfunction. Epidemiological
data has linked immune-related medical comorbidities, including autoimmune and metabolic diseases,
and chronic low-grade inflammation with BP. In particular, increases in pro-inflammatory cytokines are
observed during affective episodes in patients with BP [1]. In addition, genomic studies have revealed
weak yet significant genetic correlation between BP and immune-related diseases [2]. Nevertheless, as a
number of these observations originated from underpowered studies [3], further investigations are
required to elucidate the proposed relationships.

Lithium (Li), mainly used in the treatment of BP, is an effective pharmacological agent in the treatment of
an array of psychiatric conditions [4, 5]. In addition to its mood-stabilizing effects, Li shows anti-viral and
immune cell regulatory properties [6, 7]. The immune regulatory activity of Li has been partially attributed
to the modulation of pro-inflammatory cytokines and GSK-3β. Therefore, it has been suggested that the
mechanism through which Li improves symptom progression may be via anti-inflammatory effects [8, 9].
The Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale) is the most widely
used clinical measure of Li response. Most often, it is dichotomized such that individuals with scores ≥ 7
are classified as “responders” and those with scores < 7 as “non-responders” [10, 11]. Using this metric,
previous genetic studies have implicated human leukocyte antigen (HLA) and inflammatory cytokine
genes in the response to Li treatment in BP [12, 13]. Therefore, we hypothesized that single nucleotide
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polymorphisms (SNPs) in immune-related genes contribute, to some extent, to Li response and further,
may impact specific clinical features within BP. To test our hypothesis, we performed association studies
of a comprehensive collection of immune-related genes in 2,374 patients with BP from the International
Consortium on Lithium Genetics (ConLi+Gen) [14]. Additionally, we tested associations with published
polygenic scores (PGSs) for immune-relevant traits.

METHODS
Since our study follows a candidate approach to selected genes, pathways and networks, a diagram
summarizing the methodology employed can be found in the Supplementary Figures: Figure S1.

Study sample
The ConLi+Gen cohort has been previously described in detail [15]. Briefly, peripheral blood samples from
individuals with a diagnosis of a bipolar spectrum disorder (in accordance with the criteria established in
the Diagnostic and Statistical Manual of Mental Disorders -DSM- versions III or IV) that had taken Li for a
minimum of six months (with no additional mood stabilizers), were collected from 2003 to 2013. The
isolated DNA was genotyped in two phases. This resulted in two sample batches originally referred to as
“GWAS1” and “GWAS2”, comprising 1,162 and 1,401 individuals, respectively. Long-term responses to Li
treatment were assessed in both sample batches using the Alda scale. Here, the A subscale rates the
degree of response on a 10-point scale, and the B subscale reflects the relationship between improvement
and treatment. A total score, ranging from 0–10, is obtained by subtracting the B score from the A score
of these subscales. Negative scores are set to 0. Data on age-at-onset (AAO), age (at sample collection
and phenotyping), sex and diagnostic subtype were available for both sample batches. Diagnoses
included bipolar disorder type I and type II, schizoaffective bipolar disorder and bipolar disorder not
otherwise specified. Additionally, information on psychiatric features, namely the number of episodes of
depression, mania and hypomania, the presence of psychosis, alcohol and substance abuse, and suicidal
ideation, were available for patients in the “GWAS1” batch.

The Ethics Committee at the University of Heidelberg provided central approval for the ConLi+Gen
Consortium. Written informed consent from all participants was obtained according to the study
protocols of each of the participating sites and their institutions. All procedures were performed in
accordance with the guidelines of the Declaration of Helsinki.

Immune gene collection
A comprehensive set of immune-related genes was collated from gene lists available in the online
databases MSigDB [16] and InnateDB [17]. From MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/),
the following gene sets contained in the C2 “curated gene sets” collection were retrieved: M1036:
Reactome-innate immune system, M1058: Reactome-adaptive immune system, M39895: WikiPathways
(WP)-neuroinflammation, M39711: WP-cytokines and inflammatory response, and M39641: WP-
inflammatory response pathway. From InnateDB (https://www.innatedb.com/index.jsp), the curated gene
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lists derived from the Immunology Database and Analysis Portal (ImmPort), the Immunogenetic Related
Information Source (IRIS) and the Immunome Database, were downloaded. Chromosomal locations were
annotated from Ensembl using the hg19 build. Herein, the combined collection is referred to as the
ImmuneSet and contained 4,925 autosomal genes to be included in association analyses.

Genotype data
Schubert et al. (2021) [18] have previously described the creation of the genotype dataset used herein.
Briefly, DNA samples were originally genotyped using either Affymetrix or Illumina SNP arrays. These
genotype data from multiple cohorts were separately imputed using the 1000 Genomes Project reference
panel phase 3 v5. Each imputed dataset underwent a basic quality control (QC) step to keep variants with
minor allele frequency (MAF) > 0.01, Hardy-Weinberg equilibrium p-value (HWE) ≥ 1x10− 6 and imputation
quality score (Rsq) ≥ 0.6. Genotype calls were derived from the imputed dosage scores and all datasets
were merged by retaining only common sets of SNPs. To update this dataset and obtain a higher number
of good quality variants, we re-imputed the genotype data via the Michigan Imputation Server [19] using
the Haplotype Reference Consortium (HRC) panel for European ancestry. The re-imputed genotypes
underwent a QC step to keep variants with Rsq ≥ 0.8, MAF ≥ 0.01 and HWE ≥ 1x10− 6. Additionally,
individuals were removed if they failed the heterozygosity test and/or showed relatedness, according to
the tests performed using the plinkQC R package [20]. In the latter case, one individual from each pair of
related individuals (PI-HAT > 0.25) was removed. For analysis of the ImmuneSet, SNPs within each gene’s
boundaries (± 0 kb) were retained. The final ImmuneSet genotype datasets contained 701,031 SNPs from
1,024 and 1,350 individuals in “GWAS1” and “GWAS2”, respectively.

Polygenic Scores
A set of 32 published PGSs available at the PGS Catalog [21] were used to approximate markers of
inflammation and immune-related phenotypes that were not experimentally measured in the “GWAS1”
ConLi+Gen sample. These PGSs, created and evaluated in large samples of predominantly European
ancestry, stemmed from three recent publications and corresponded to the following traits: autoimmune
disease [22], lymphocyte / monocyte / eosinophil / neutrophil / basophil percentage of white (blood) cells
[23], and serum levels of 26 markers of inflammation [24]. After downloading and harmonizing weight
files, we performed allelic scoring in ConLi+Gen using the sum method applied in Plink 1.9 [25].

Association analyses
The “GWAS1” (N = 853) and “GWAS2” (N = 1,258) samples were tested separately for associations of
701,031 SNPs in the ImmuneSet with: 1) Li response (responder / non-responder, defined by Alda scores 
≥ 7 or < 7, respectively), 2) total Alda score, 3) Alda subscale A, and 4) Alda subscale B (total). Because
the most reliable continuous Li response phenotype has been previously shown to be the Alda A score,
when excluding individuals with Alda B scores > 4 [10], we tested this as the primary continuous
phenotype in our study. All association tests were performed applying an additive model in Plink 1.9, and
all models were adjusted for age at recruitment, age-at-onset (AAO), sex, diagnosis and the first principal
components (PCs) obtained for each ImmuneSet genotypes dataset. PCA plots were explored to
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determine the optimal number of PCs to be used as covariates for each sample. Therefore, the first five
PCs were used as covariates for “GWAS1” while the first six PCs were used for “GWAS2”. Population
stratification due to ancestry was successfully corrected by the selected numbers of PCs (Supplementary
Figures: Figure S2). Next, the association results for Li response from “GWAS1” and “GWAS2” samples
were meta-analyzed using the weighted-z (METAL) method applied in Plink 1.9. These meta-analysis
results were QCed to exclude variants with I2 heterogeneity index (I) > 40 and p-value for Cochran's Q
statistic (Q) < 0.1 (highly heterogeneous). We searched first for associations at the commonly accepted
thresholds for GWASs (genome-wide significance, p < 5x10− 8, and suggestive significance, p < 1x10− 5).
However, considering this a candidate gene rather than a genome-wide approach, we chose to look
further into findings with p < 1x10− 4, a threshold that has been previously used to select association
findings for follow-up in GWASs [26] and, therefore, represents an acceptable exploratory threshold.

In “GWAS1”, the ImmuneSet was further tested for associations with other BP clinical phenotypes (i.e.
AAO, the number of episodes of depression, mania and hypomania, as well as the presence of psychosis,
alcohol and/or substance abuse, and suicidal ideation). These models were adjusted for age at
recruitment, AAO (except when AAO was tested as phenotype), sex, diagnosis and the first five PCs.
Statistical significance was considered as above.

Associations between PGSs and the various BP clinical phenotypes were tested using linear or binomial
regression models, as appropriate, adjusted for age at recruitment, AAO (except when AAO was tested as
phenotype), sex, diagnosis and population using the robustbase R package. Significance was set to false
discovery rate (FDR) < 0.05. However, we also looked into the nominally significant findings (p < 0.05) for
exploratory purposes.

Downstream analyses
All variants under the p < 1x10− 4 threshold were annotated for known regulatory effects on gene
expression (i.e. expression quantitative trait loci, eQTLs) in all human brain, blood, spleen and thyroid
tissues, as well as in immune cells (e.g. monocytes and macrophages) using Qtlizer [27].

A protein-protein interaction (PPI) network to explore the functional relevance of the identified genes
associated with Li response was created using the ReactomeFIViz app [28] for Cytoscape 3.7 [29]. This
analysis used as input a list composed of the ImmuneSet genes showing associations at the p < 1x10− 4

threshold with the dichotomous and continuous Li response phenotypes. The network also incorporated
“linker” genes (i.e. genes not in the input gene list that create indirect connections between input genes) to
increase biological interpretability. Moreover, pathway overrepresentation analysis was performed on the
PPI network (including linker genes) using the pathway enrichment network function of the app. Because
the linker genes were not drawn from the ImmuneSet collection, we used the standard background genes
of the ReactomeFiViz app for this analysis. The resulting overrepresented pathways were filtered to
exclude terms that: 1) had FDR > 0.05, 2) corresponded to a specific disease (e.g. bladder cancer, herpes
virus infection), 3) had less than two genes overlapping between the pathway set and the network set,
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and/or 4) the overlap with the pathway set represented less than 3% of genes in the set. Additionally, we
repeated the pathway overrepresentation analysis including not only the variant mapped genes, but also
the annotated eQTL genes.

For associations with clinical phenotypes in the “GWAS1” sample, functional analyses were performed
using the GENE2FUNC tool of the Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA-GWAS) platform [30]. The input gene lists included mapped and eQTL genes annotated
for variants below the p < 1x10− 4 threshold for each studied phenotype. Because eQTL genes were not
drawn from our ImmuneSet collection, we used all protein-coding genes as background for these
analyses. Overrepresented gene sets were those that showed FDR < 0.05, following a hypergeometric test,
and a minimum of two overlapping genes. Curated gene sets from pathway databases in the “canonical
pathways” category were preferred when available. Otherwise, Gene Ontology biological processes
(GO_BPs) or any other available category (including GWAS Catalog trait associations) were taken. For
GTEx-based enriched tissues of expression, as our focus is on immune-brain relationships, we kept only
those enrichments corresponding to brain expression, as these are the most relevant tissues for the
analysis of Li response and clinical features of BP.

In addition, the relative importance for (dichotomous) Li response of the calculated PGSs in “GWAS1”
was assessed through a machine learning (ML) screening approach using the Auto Model extension of
RapidMiner Studio. This applied various classification algorithms to the raw PGS data. Auto Model
provides the following models: Naïve Bayes, Generalized Linear Model, Logistic Regression, Fast Large
Margin, Deep Learning, Decision Tree, Random Forest, Gradient Boosted Trees and Support Vector
Machines. Because ML algorithms are sensitive to class imbalance, an equal number of responder and
non-responder individuals were randomly selected for the analysis (N = 657) using the sample method of
the Python’s Pandas library. The resulting file with balanced classes was used as input for the ML
screening in Auto Model, where the sample was randomly divided into training (60%) and test (40%) sets.
Default parameters for all algorithms were applied. Given that different types of ML algorithms can differ
in their feature selection procedure due to their inherent characteristics, here, features were considered
important for Li response, with either a positive (i.e. favoring response) or a negative (i.e. favoring non-
response) effect, when at least two algorithms selected the same feature with the same effect direction
as important for the classification task.

RESULTS

Immune-related genes associated with response to Li
treatment in BP
After excluding individuals with missing phenotypic data (age and/or AAO), the effective sample sizes for
the association analyses in ConLi+Gen were 853 and 1,258 in “GWAS1” and “GWAS2”, respectively. A
basic description of both samples is shown in Table 1. In general, there were more female than male
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patients in both samples and there were minimal differences in the mean ages at recruitment and disease
onset between “GWAS1” and “GWAS2”. Therefore, the total sample size of our meta-analyses of Li
response was 2,111, including 606 (28.7%) responders and 1,505 non-responders for the dichotomized
variable, which included 1,224 (58%) females and 887 males, with mean age 47 (± 14) years and mean
AAO 25 (± 11) years. For the continuous Li response phenotype (i.e. Alda A score, excluding individuals
with Alda B score > 4), the effective sample sizes were 828 for “GWAS1” and 1,044 for “GWAS2”. After the
post-meta-analysis exclusion of variants with heterogeneous effects between both ConLi+Gen samples, a
mean of 556,196 SNPs remained in each set of summary statistics. This was higher for the continuous
phenotype, in which 625,818 SNPs remained.
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Table 1
Description of the ConLi+Gen samples.

  Responders (Total Alda 
≥ 7)

Non-Responders (Total Alda 
< 7)

Total

GWAS1

N Effective sample (% from
total)

297 (34.8) 556 (65.2) 853

N Females (%) 178 (59.9) 337 (60.6) 515
(60.4)

Age (mean ± SD) 52 ± 14 46 ± 14 48 ± 14

Age-at-onset (mean ± SD) 28 ± 11 23 ± 11 25 ± 11

# Depressive episodes
(mean)

5 7 6

# Hypomanic episodes
(mean)

2 6 4

# Manic episodes (mean) 4 6 5

N Psychosis cases (%) 72 (24.2) 270 (48.6) 342
(40.1)

N Alcohol abuse cases (%) 18 (6.1) 122 (21.9) 140
(16.4)

N Substance abuse cases
(%)

30 (10.1) 105 (18.9) 135
(15.8)

N Suicidal ideation cases (%) 75 (25.3) 256 (46.0) 331
(38.8)

GWAS2

N Effective sample (% from
total)

309 (24.6) 949 (75.4) 1258

Females (%) 157 (50.8) 552 (58.2) 709
(56.4)

Age (mean ± SD) 48 ± 15 46 ± 13 47 ± 14

Age-at-onset (mean ± SD) 25 ± 10 25 ± 11 25 ± 11

We found no associations with Li response at the genome-wide GWAS threshold (p < 5x10− 8). At the
suggestive threshold for GWAS (p < 1x10− 5), the dichotomous Li response phenotype and Alda B (total)
showed associations with FAT3 (best SNP: rs4313539, p = 2.1x10− 6, z = 4.744), and with ADAMTS5 (best
SNP: rs162501, p = 9.18x10− 7, z = 4.909) and GRID2 (best SNP: rs62312225, p = 2.71x10− 6, z = 4.692),
respectively (Supplementary File 1: Table 1). At the exploratory threshold (p < 1x10− 4), when considering
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linkage disequilibrium (LD), we identified between 9 and 12 genomic loci in relation with different aspects
of Li response (Supplementary File 1: Table 1). The most significant SNPs from the analyses of the
dichotomous and continuous phenotypes mapped to FAT3 and BMPR1A, respectively (Table 2). In total,
42 genes were implicated in the response to Li in patients with BP from our exploratory analyses in the
ConLi+Gen cohort (Supplementary File 2: Table 1). As expected, there was a number of gene-based
overlaps between different aspects of Li response, particularly between the dichotomous variable and
total Alda score, and between the continuous variable and the other Alda variables.

Table 2
Summary findings from the genetic association meta-analyses of Li responses in

ConLi+Gen.
Meta-analysis summary Response vs No-response Continuous Li response

# SNPs after QC 557,037 625,818

# SNPs p < 0.05 27,426 31,489

# SNPs p < 1x10− 4 124 33

# Lead SNPs 11 11

Top lead SNP rs4313539 rs12776537

Effect allele C A

p-value 2.1x10− 6 2.5x10− 5

Z 4.7 -4.2

Gene FAT3 BMPR1A

# SNPs p < 1x10− 5 15 0

Twenty-four ImmuneSet genes were implicated in the primary Li response phenotypes (i.e. dichotomous
and continuous) in our exploratory analysis (Fig. 1A). These were used as input for a network analysis to
facilitate biological interpretation of the findings. This network analysis provided known and predicted
functional interactions between a subset of 21 input genes from our association results and 16 linkers
drawn from the total of protein-coding genes in the background reference of the ReactomeFiViz app
(Fig. 1B). Functional analysis of the network uncovered an overrepresentation of crucial developmental
pathways and regulatory networks, suggesting the involvement of processes such as assembly and
stability of the cell-cell signaling machinery (e.g. adherens junction, E-cadherin signaling, focal adhesion,
integrin signaling, L1 cell adhesion molecule signaling), neuronal development and function (e.g.
neurotrophic signaling, lysophosphatidic acid receptor mediated events, regulation of pluripotency, Wnt
signaling), as well as activation of inflammatory (e.g. sphingolipid signaling, S1P pathways, toll-like
receptor signaling) and adaptive immune pathways (e.g. T and B cell receptor signaling) in the biological
response to Li. Interestingly, processes such as angiogenesis, long-term potentiation, thyroid hormone
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signaling pathways, melanogenesis and sensory processing were also overrepresented in our network
analysis (Supplementary File 2: Table 2). These observations suggest that variation in immune-related
genes and its effects that expand beyond inflammatory and immune responses from early
developmental stages contribute to determine the extent of the organism’s response to Li treatment in
patients with BP. Moreover, when eQTL genes were incorporated into the analysis, there was a marked
overrepresentation of inflammatory and autoimmune disease pathways (e.g. asthma, type 1 diabetes
mellitus, autoimmune thyroid disease, inflammatory bowel disease) and of vitamin D metabolism. The
Wnt signaling, cell adhesion and adaptive immune pathways remained significantly overrepresented
(data not shown). All protein-coding eQTL genes annotated for Li response phenotypes are shown in
Fig. 2A.

Immune-related genes associated with clinical phenotypes
in BP
The association analyses of the ImmuneSet with specific clinical features that were available for the
“GWAS1” sample showed no associations at the genome-wide GWAS threshold. However, at the
suggestive GWAS threshold there were, collectively, 100 associations between the ImmuneSet and AAO
(3), number of depressive (54) and manic (14) episodes, and the presence of psychosis (1), substance
use disorder (15) and/or suicidal ideation (13). These implicated 17 genes that associated to specific
clinical features (i.e. no overlaps were observed at this threshold Table 3). When we moved forward to the
exploratory analysis, we identified 786 SNP-phenotype associations in total (Supplementary File 1:
Tables 2–9). These implicated 166 immune-related genes (Fig. 1A; Supplementary File 2: Table 1) mostly
involved in adaptive immunity and inflammation. Beyond their immune functions, however, these genes
play important roles in the development of the nervous system, signal transduction, synaptic processes
and cell adhesion (Supplementary File 2: Tables 3–9). In particular, large numbers of associations were
found for AAO and mood episodes (Table 3). In addition, 156 eQTL genes were collectively annotated for
these phenotypes. Figure 2A shows the protein-coding eQTL genes annotated for each clinical feature.
Even when these showed no overlaps among the clinical phenotypes, there were some overlaps with the
ImmuneSet genes meaning that, in some instances, the eQTL gene corresponded to the gene mapped to
the variant while, in others, the eQTL gene was different from the mapped gene. A summary of
exploratory findings for each clinical phenotype studied is shown below.
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Table 3
Summary of findings from the association analyses of the ImmuneSet with clinical characteristics in the

ConLi+Gen "GWAS1" sample.
Phenotype N Exploratory

threshold (p < 
1e-4)

Suggestive GWAS threshold (p < 1e-
5)

Top gene

#
SNPs

#
Genes

#
SNPs

#
Genes

Genes Symbol Pval

Age-at-
onset

853 54 21 3 2 GRK5, PLD3 GRK5 3.9x10− 

6

#
Depressive
episodes

692 107 31 54 6 BLNK, PHLPP1,
ZCCHC11, SACS,
CPPED1,
PRPF38A

BLNK 1.7x10− 

7

# Manic
episodes

665 116 32 14 4 CNTN6, KALRN,
LY86, PTK2B

CNTN6 2.4x10− 

6

Psychosis 692 45 13 1 1 DSCAM DSCAM 7.6x10− 

6

Alcohol
abuse

835 29 9 0 0 - SCD5 1.8x10− 

5

Substance
abuse

832 78 17 15 3 TPD52, NOD1,
XKR4

TPD52 4.510− 7

Suicidal
ideation

660 30 7 13 1 JARID2 JARID2 3.9x10− 

6

Age-at-onset. Fifty-four associations in 21 ImmuneSet genes were found for AAO in our study (Table 3,
Supplementary File 1: Table 2). These genes were enriched for negative regulation of cell death and
synaptic transmission, as well as expression in the cerebellum (Supplementary File 2: Table 3). The top
variant, rs1248079 (p = 3.9x10− 6, beta = 2.75), mapped to an intronic region in GRK5 (G Protein-Coupled
Receptor Kinase 5). Other important genes included PLD3, AKT2 and IL1B. The addition of eQTL genes to
the functional enrichment analysis resulted in an additional overrepresentation of processes related to
cellular stress responses.

Depression. With an effective sample of 692 individuals, 107 associations in 31 ImmuneSet genes for the
number of depressive episodes were found (Table 3, Supplementary File 1: Table 3). These genes were
enriched for synaptic processes, as well as expression in frontal and anterior cingulate cortices
(Supplementary File 2: Table 4). While the top variant, rs55975329 (p = 1.7x10− 7, beta = 4.54), localized to
an intron in BLNK (B cell linker), other important genes included PHLPP1, ZCCHC11 (TUT4) and CPPED1.
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The addition of eQTL genes to the functional enrichment analysis resulted in an additional
overrepresentation of axonal and synaptic components.

Table 4
Prioritized ImmuneSet candidate genes for Li response and clinical characteristics in ConLi+Gen.

Gene Chr Start End Priority Phenotypes

ALK 2 29415640 30144432 Psychiatric Depression, Mania

NRXN1 2 50145643 51259674 Psychiatric Depression, Hypomania, Substance

RTN4 2 55199325 55339757 Psychiatric Mania, Psychosis

CNTNAP5 2 124025287 124915287 Li
response

LiResponse, Alda_B, Alda_Total

LRP1B 2 140988992 142889270 Psychiatric AAO, Mania

ROBO2 3 75906695 77649964 Both Alda_Total, Hypomania, Substance

BANK1 4 101411286 102074812 Both Continuous.LiResp, Alda_A, Alda_B,
Alda_Total, Hypomania

CDH12 5 21750673 22853622 Both LiResponse, Suicide

DSP 6 7541575 7586717 Li
response

Continuous.LiResp, Alda_Total

NPSR1-
AS1

7 34386124 34911194 Psychiatric Depression, Suicide

CNTNAP2 7 146116002 148420998 Both LiResponse, Alda_Total, Mania

NRG1 8 31496902 32622548 Psychiatric Mania, Substance

XKR4 8 56014949 56454613 Psychiatric Depression, Mania, Psychosis,
Substance

NFIB 9 14081843 14398983 Li
response

Continuous.LiResp, Alda_B

NRG3 10 83635070 84746935 Psychiatric Alcohol, Psychosis

BMPR1A 10 86756601 86932838 Li
response

Continuous.LiResp, Alda_A

GRK5 10 120967101 121215131 Psychiatric AAO, Depression

FAT3 11 92352096 92896470 Both LiResponse, Alda_Total, Depression

PCDH9 13 66302834 67230445 Both Alda_B, Mania, Substance

CPPED1 16 12756919 12897874 Psychiatric AAO, Depression

HAS3 16 69105564 69118719 Li
response

Continuous.LiResp, Alda_A,
Alda_Total
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Hypomania. Although the largest associations were found for the number of hypomanic episodes, these
observations were based on only 85 individuals with available data. Therefore, we have excluded this
phenotype from the figures and tables shown within this manuscript. All corresponding results are
provided in the supplementary material (Supplementary File 1: Table 4, Supplementary File 2: Table 5).

Mania. With an effective sample of 665 individuals, 116 associations in 32 ImmuneSet genes for the
number of manic episodes were found (Table 3, Supplementary File 1: Table 5). These genes were
enriched for neuronal development and differentiation, as well as expression in spinal cord and frontal
cortex (Supplementary File 2: Table 6). The top variant, rs59134172 (p = 2.4x10− 6, beta = 1.62), localized
to an intron in CNTN6 (Contactin 6). Other important genes included KALRN, PCDH9, PTK2B and
CNTNAP2. Interestingly, we also found enrichment for response to serotonin re-uptake inhibitors in major
depressive disorder (FDR = 0.042) and serum thyroid-stimulating hormone levels (FDR = 0.0028), from the
GWAS Catalog trait associations, in mania-associated ImmuneSet genes. The addition of eQTL genes to
the functional enrichment analysis had no impact on the overrepresented gene set classes.

Psychosis. The effective sample for our analysis of the presence of psychosis in BP was 692 individuals.
Here, 45 associations in 13 genes were identified (Table 3, Supplementary File 1: Table 6). The implicated
genes were enriched for cell adhesion and synapse organization, as well as expression in frontal cortex
(Supplementary File 2: Table 7). The top SNP, rs459374 (p = 7.6x10− 6, beta = 1.96), is located in an
intronic region of DSCAM (DS Cell Adhesion Molecule). Other interesting genes included CLSTN2, RTN4
and CDH13. Moreover, the GWAS Catalog traits seasonality and depression (FDR = 0.02), and response to
amphetamines (FDR = 0.026), as well as obesity-related traits (FDR = 0.015), atrial fibrillation (FDR = 
0.027) and diastolic blood pressure (FDR = 0.027) were enriched among the psychosis-associated genes.
The addition of eQTL genes to the functional enrichment analysis had no impact on the overrepresented
processes. However, this resulted in a considerable increase in overepresented brain tissues of
expression, including the hippocampus, amygdala, hipothalamus, anterior cingulate cortex, putamen and
substantia nigra.

Alcohol and substance abuse. The effective sample sizes for alcohol and substance use disorders in
ConLi+Gen were 835 and 832, respectively. Twenty-nine SNPs in nine genes were associated with alcohol
use, with the rs7698751 SNP in SCD5 (Stearoyl-CoA Desaturase 5) being the top association (p = 1.8x10− 

5, beta = 2.61). Although no gene set enrichments were found for associations with alcohol abuse, other
implicated genes included the BP-associated DGKH, NRG3 and RIMS1 (Supplementary File 1: Table 7).
Interestingly, when incorporating the eQTLs genes into this functional analysis, overrepresentation of
genes associated with mood swings, loneliness and anxious behaviors in the GWAS Catalog was
observed (Supplementary File 2: Table 8). For substance use disorder, 78 associations implicating 17
genes were found (Supplementary File 1: Table 8). Genes were overrepresented in neurogenesis-related
processes, with expression in cerebellum as well as frontal and anterior cingulate cortices
(Supplementary File 2: Table 8). The top variant, rs7814474 (p = 4.5x10− 7, beta = 6.7), was mapped to an
intron in TPD52 (Tumor Protein D52). Other genes included the BP-associated NRG1, the schizophrenia-
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associated PTPRM, as well as NOD1 and PRKCQ. In addition, the GWAS Catalog traits chronotype (FDR = 
0.011) and serum thyroid-stimulating hormone levels (FDR = 0.047) were also overrepresented in
substance abuse-associated ImmuneSet genes. The addition of eQTL genes to the functional enrichment
analysis resulted in an additional overrepresentation of the phosphatidylinositol signaling system and
expression in the amygdala, hippocampus and basal ganglia.

Suicidal ideation. Information on the presence of suicidal thoughts was available for 660 ConLi+Gen
individuals. Based on these, 30 variants in seven genes were associated with suicidal ideation in the
“GWAS1” sample (Table 3, Supplementary File 1: Table 9). The top SNP was rs2327882 (p = 3.9x10− 6,
beta = 0.55), located in an intron of the JARID2 (Jumonji and AT-Rich Interaction Domain Containing 2)
gene. Gene set enrichment analysis found overrepresentation of functions of nuclear receptors
(Supplementary File 2: Table 9). Indeed, these terms related to RARB and THRB. The addition of eQTL
genes to the functional enrichment analysis had no impact on the overrepresented gene set classes.

Immune-related genes showed pleiotropy for BP
phenotypes
Not surprisingly, a number of genes showed shared associations with the different phenotypes included
in our exploratory ImmuneSet analyses in ConLi+Gen (Fig. 1A). Therefore, these genes can be prioritized
for follow-up studies due to their pleiotropic effects in Li response, clinical features, or both. In this way,
we prioritized 21 genes that showed associations with more than one BP phenotype (Table 4). Here, we
excluded genes associated with Alda A, total Alda B and/or Total Alda when there was no overlap with
the dichotomous and/or continuous Li response phenotypes. However, a complete list of corresponding
gene-phenotype associations (197 in total) is shown in Supplementary File 2: Table 1. Five of the
prioritized genes (CNTNAP5, DSP, NFIB, BMPR1A, and HAS3) were associated with multiple Li response
phenotypes, 10 of them (XKR4, NRXN1, RTN4, NRG1/3, ALK, GRK5, LRP1B, NPSR1-AS1 and CPPED1)
were associated with multiple clinical features, and another six genes (BANK1, ROBO2, CNTNAP2, PCDH9,
CDH12 and FAT3) were associated with Li response as well as with clinical features.

Polygenic scores for immune-related traits associated with
BP phenotypes
In addition to testing associations of the ImmuneSet with BP phenotypes, we calculated a set of 32
previously published immune-related PGSs, namely for: 1) (general) autoimmune disease, 2) the
proportions of white blood cell populations and 3) inflammatory marker levels in serum (Supplementary
File 2: Table 10). The overlap of variants between the PGS weight files obtained from PGS Catalog and
the SNPs available in our ConLi+Gen “GWAS1” sample was, in general, better for the serum levels of
inflammatory markers (80.6% in average) than for the other PGSs. The lowest valid SNP overlap was
found for the PGS of general autoimmune disease (38.8%), suggesting that this PGS may relatively
poorly index autoimmune disease signatures. For the proportion of white blood cell populations, the valid
SNP overlap was also not fully satisfactory (49.4% in average). Nevertheless, we were able to obtain
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some valuable insights by using these scores (Fig. 2B). We found associations (FDR < 0.05) of the PGSs
for CXCL1 (C-X-C Motif Chemokine Ligand 1; z = 14.9, p < 2x10− 6), ECP (Eosinophilic Cationic Protein; z = 
3.7, p = 2.4x10− 4), FAS (Fas Cell Surface Death Receptor; z= -5.9, p = 5.6x10− 9) and TRANCE/TNFSF11
(TNF-related Activation-induced Cytokine/TNF Superfamily Member 11; z = 3.4, p = 0.0007) with the
continuous Li response variable. No associations with the dichotomous variable survived correction for
multiple comparisons. However, ML-based PGS ranking for the dichotomized Li response added another
level of support to the links with CCL4 and ECP, and suggested relative importance of HSP27 (Heat Shock
Protein Family B (Small) Member 1), CHI3L1 (Chitinase 3 Like 1), TNFR1, TRAILR2 and TNFSF14 (TNF
Superfamily Member 14) for the prediction of responses to Li treatment in ConLi+Gen (Supplementary
Figures: Figure S3). The PGSs for CCL4 (C-C Motif Chemokine Ligand 4; z = 5.4, p = 7.5x10− 8) and
TRAIL/TNFSF10 (TNF-related apoptosis-inducing ligand/TNF Superfamily Member 10; z = 3.6, p = 
3.7x10− 4) were associated with disease AAO. For the number of episodes of depression, we found
associations with the PGSs for CXCL1 (z = 6.5, p = 1.3x10− 10), CXCL6 (C-X-C Motif Chemokine Ligand 6;
z= -12.2, p < 2x10− 6), ECP (z= -11.8, p < 2x10− 6), GAL3 (Galectin 3; z= -20.1, p < 2x10− 6), and
TNFR1/TNFRSF1A (TNF Receptor Superfamily Member 1A; z = 21.9, p < 2x10− 6). The number of episodes
of mania were associated with the PGSs for eosinophils (z= -2.9, p = 0.003), CSF1 (Colony Stimulating
Factor 1; z= -3.4, p = 7.7x10− 4), CXCL1 (z= -4.1, p = 4.6x10− 5), CXCL6 (z = 3.9, p = 1.1x10− 4), CXCL16 (z = 
3.9, p = 1.2x10− 4), FAS (z= -3.3, p = 0.0012) and TRANCE (z= -3.8, p = 1.5x10− 4). Finally, the PGSs for
TRAILR2/TNFRSF10B (TNF Receptor Superfamily Member 10b; z= -4.6, p = 5.1x10− 6) and TRANCE (z=
-5.2, p = 2.1x10− 7) were associated with the presence of psychosis in patients with BP. A number of
associations between PGSs for immune-relevant blood traits and clinically-relevant BP features remained
only suggested, as these did not survive correction for multiple comparisons (Supplementary File 2:
Table 10).

DISCUSSION
There is apparent mounting evidence of immune dysregulation in BP and other major psychiatric
diseases. Nevertheless, some observations have originated from underpowered studies, resulting in a lack
of reproducibility [3]. Therefore, it becomes crucial to gain a better understanding of the relationships
between the immune and central nervous systems, and to discern between causes and consequences of
disease. In very general terms, it can be assumed that the existence of genetic associations with a given
phenotype indicates causal contributions of the associated loci to the studied phenotype. With this in
mind, we sought to investigate how genetic factors relevant to immune activity relate to disease
phenotypes, such as response to Li treatment, AAO and psychiatric symptoms, in patients with BP. Using
an exploratory and extensive candidate gene approach, our study prioritized various genes and
inflammatory markers that appeared to represent pleiotropic factors contributing to multiple phenotypes.
However, we should note that, here, we refer to pleiotropy as the (suggested) association with multiple
traits in the ConLi+Gen cohort and, by no means, have we implied that these features are independent
from each other. In fact, it should be expected that, given the important correlation between psychiatric
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disorders, the features that we have studied in ConLi+Gen are, to some extent, also correlated with each
other. Also, because genes can play different roles in different tissues and cell types, we observed
widespread enrichments of biological pathways participating in the development and function of the
brain. This suggested that the genes implicated in BP phenotypes might affect in parallel both the
immune and nervous systems. Nevertheless, because we found no associations at the genome-wide
GWAS threshold of significance, and those observed at the suggestive GWAS threshold were limited, our
findings are also consistent with a relatively weak effect of immune genetic factors over BP phenotypes.

The results of our exploratory assessment of associations of genetic polymorphisms in immune-related
genes with Li response in the ConLi+Gen cohort suggest that variations in inflammatory and adaptive
immune processes might contribute to the efficiency of the response to Li treatment in patients with BP.
Importantly, our network and gene set enrichment analysis uncovered an involvement of numerous
biological pathways that participate in cell adhesion, migration and intercellular communication, helping
in the development and maintenance of the central and peripheral nervous systems, as well as of the
immune and vascular systems. Interestingly, many of these appear to converge in the participation of
GSK-3β (glycogen synthase kinase-3 beta), as assessed through comparative overlap analysis of the
enriched KEGG and Reactome gene sets. GSK-3β is involved in multiple major developmental pathways,
such as the Wnt, Notch and Hedgehog signaling pathways. Genetic manipulation in mouse models has
shown an antidepressant-like behavior upon GSK-3β knockdown in hippocampus, as well as cognitive,
behavioral and biochemical changes associated with psychiatric disorders, including Alzheimer’s disease,
BP and schizophrenia, upon GSK-3β overexpression [31]. Li possesses a well-known inhibitory effect over
GSK-3β [32]. Therefore, our analysis suggests that GSK-3β might be highly relevant for the response to Li
treatment in BP. Our findings are also in agreement with other epidemiological and molecular
investigations of Li effects. For example, we repeatedly observed overrepresentation of gene sets related
to thyroid function, such as thyroid-stimulating hormone signaling and autoimmune thyroid disease. This
is in line with the reports of a reversible association of Li treatment with hypothyroidism, particularly in
women [33, 34].

Taken together, the encouraging literature supporting our findings sparked our interest in exploring how a
genetic measure (PGS) for inflammatory marker levels in serum might associate with Li response in
ConLi+Gen. Our results supported a relationship between Li treatment response and the genetic influence
on the levels of various inflammatory markers circulating in serum. These included CXCL1, ECP, FAS,
TRANCE and CCL4, molecules that regulate the activation and recruitment of immune cells (T and B
lymphocytes, monocytes, macrophages, neutrophils and eosinophils).

The results of our exploratory assessment of associations of genetic polymorphisms in the ImmuneSet
genes with BP’s AAO, numbers of mood episodes and psychiatric comorbidities in ConLi+Gen identified
various candidate genes particularly contributing to mood episodes and substance abuse, including
XKR4, NRXN1, GRK5 and NRG1/3. These genes, besides their immune-related functionalities, seem to
play important roles in neuronal development and function, according to our gene set enrichment
analyses. Indeed, this could be corroborated by the literature in many instances. For example, NRXN1, a
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cell surface protein involved in cell-cell interactions, exocytosis of secretory granules and regulation of
signal transmission, has been associated with autism, schizophrenia and nicotine dependence [35]. GRK5
has a role in the regulation of motility in polymorphonuclear leukocytes and inflammation [36, 37]. It also
regulates the activity of various G-protein coupled receptors, including neurotransmitter receptors [38].
XKR4, a phospholipid scramblase strongly expressed in brain tissue and activated by caspases, has been
suggested to participate in the remodeling of neural networks by triggering microglial responses to the
exposure of phosphatidylserine on axons, dendrites and synapses [39].

It is worth noting that three of our candidate genes for depressive episodes have previously shown
associations with either major depression at the gene-level (DCC) [40] or mapped to schizophrenia loci
(CR1L and DGKI) [41] in large GWASs. Moreover, one of our candidate genes for manic episodes, ESR2,
and one for substance use disorder, BTN3A2, were previously associated at the gene-level with major
depression in the large GWAS, while one of our candidates for hypomanic episodes and alcohol
dependence, the BP-associated RIMS1 [26], mapped previously to schizophrenia loci. This, together with
the overlaps with reported BP-associated genes that we observed, particularly concerning known eQTL
genes, provides another level of support to the validity of our findings.

Additionally, the results of our exploratory assessment of PGS associations led to interesting
observations. For example, that activation of macrophages and neutrophils, reflected by the associations
with the PGSs for various cytokines and chemokines produced by or targeting these cells (e.g. interleukin-
8, CX3CL1, CXCL6/16), might contribute to disease AAO in ConLi+Gen. Indeed, these observations are
supported by studies that have found increases in neutrophil counts in psychiatric disorders, including BP
[42, 43], as well as association of genetic polymorphisms in interleukin-1β, a pro-inflammatory cytokine
produced by activated immune cells, including neutrophils and macrophages, with age of onset of
depression in geriatric patients [44]. In addition, if we consider that macrophage/neutrophil activation
was also a suggested mechanism of Li response in our study, it would be easy to speculate that
activation of these cells might be linked with some aspect of the disease onset.

In conclusion, we performed an exploratory study that indicates a relationship between immunity and
clinically relevant BP phenotypes at the genetic level, and pinpoints various interesting candidates for
follow-up studies. We acknowledge that our study was limited by a relatively small sample size,
particularly for the episodes of hypomania, and by incomplete overlap between the variants in the PGSs
and our ConLi+Gen dataset. The latter, which likely resulted from a limited overlap among the different
SNP arrays initially used to genotype samples in different collection centers, caused an incomplete
indexing of the immune phenotypes of interest, and a relatively low rate of survival of correction for
multiple comparisons in the PGS-BP phenotype relationships. Nevertheless, despite inherent limitations,
we believe that our study provides valuable insight and furthers the understanding of the immune
implications in BP. These results complement the evidence coming from epidemiological data and
previous findings in ConLi+Gen, and support the hypothesis that, to some extent, immune regulation
might represent a feasible strategy to improve the symptomatology and treatment response in patients
with BP.
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Figure 1

Exploratory findings for the ImmuneSet in ConLi+Gen. A) Gene-based phenogram of associations of the
ImmuneSet with Li response and clinical features in ConLi+Gen. B) Protein-protein interaction network of
Li response phenotype associations in the ImmuneSet. Circles represent input genes and diamonds
represent linker genes. Dotted lines denote predicted interactions.

Figure 2

A) Gene-based phenogram of eQTL annotations for the exploratory-level findings of the ImmuneSet in
ConLi+Gen. Those eQTL genes that were different from the mapped gene and those that were the same
are presented in circle and diamond shapes, respectively. Only protein-coding genes are shown. In
addition, overlaps with BP genetic associations reported in the GWAS Catalog are presented.  B)
Exploratory findings for the immune-related polygenic scores calculated in ConLi+Gen. Significance of
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calculated PGSs for BP phenotypes in ConLi+Gen “GWAS1”. The heatmap shows the z-values obtained
for each PGS-phenotype pair. Increasing color darkness alludes to increasing effect, with red and blue
colors at the negativ and positive extremes, respectively.
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