001     1010151
005     20231102104927.0
024 7 _ |2 doi
|a 10.5194/soil-9-365-2023
024 7 _ |2 ISSN
|a 2199-3971
024 7 _ |2 ISSN
|a 2199-398X
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2023-02979
024 7 _ |2 WOS
|a WOS:001021655700001
037 _ _ |a FZJ-2023-02979
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Guillaume, Benjamin
|b 0
|e Corresponding author
245 _ _ |a Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
260 _ _ |a Göttingen
|b Copernicus Publ.
|c 2023
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1692359212_8450
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The soil water retention curve (SWRC) is a key soil property required for predicting basic hydrological processes. The SWRC is often obtained in the laboratory with non-harmonized methods. Moreover, procedures associated with each method are not standardized. This can induce a lack of reproducibility between laboratories using different methods and procedures or using the same methods with different procedures. The goal of this study was to estimate the inter- and intralaboratory variability of the measurement of the wet part (from 10 to 300 hPa) of the SWRC. An interlaboratory comparison was carried out between 14 laboratories, using artificially constructed, porous reference samples that were transferred between laboratories according to a statistical design. The retention measurements were modelled by a series of linear mixed models using a Bayesian approach. This allowed the detection of sample-to-sample variability, interlaboratory variability, intralaboratory variability and the effects of sample changes between measurements. The greatest portion of the differences in the measurement of SWRCs was due to interlaboratory variability. The intralaboratory variability was highly variable depending on the laboratory. Some laboratories successfully reproduced the same SWRC on the same sample, while others did not. The mean intralaboratory variability over all laboratories was smaller than the mean interlaboratory variability. A possible explanation for these results is that all laboratories used slightly different methods and procedures. We believe that this result may be of great importance regarding the quality of SWRC databases built by pooling SWRCs obtained in different laboratories. The quality of pedotransfer functions or maps that might be derived is probably hampered by this inter- and intralaboratory variability. The way forward is that measurement procedures of the SWRC need to be harmonized and standardized.
536 _ _ |0 G:(DE-HGF)POF4-2173
|a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |0 P:(DE-HGF)0
|a Aroui Boukbida, Hanane
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bakker, Gerben
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Bieganowski, Andrzej
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Brostaux, Yves
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Cornelis, Wim
|b 5
700 1 _ |0 0000-0002-9543-1318
|a Durner, Wolfgang
|b 6
700 1 _ |0 0000-0003-1172-981X
|a Hartmann, Christian
|b 7
700 1 _ |0 0000-0002-2276-0233
|a Iversen, Bo V.
|b 8
700 1 _ |a Javaux, Mathieu
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Ingwersen, Joachim
|b 10
700 1 _ |0 0000-0001-9678-541X
|a Lamorski, Krzysztof
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Lamparter, Axel
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Makó, András
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Mingot Soriano, Ana María
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Messing, Ingmar
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Nemes, Attila
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Pomes-Bordedebat, Alexandre
|b 17
700 1 _ |0 0000-0002-3172-7339
|a van der Ploeg, Martine
|b 18
700 1 _ |0 0000-0002-3448-5208
|a Weber, Tobias Karl David
|b 19
700 1 _ |0 P:(DE-Juel1)129553
|a Weihermüller, Lutz
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Wellens, Joost
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Degré, Aurore
|b 22
773 _ _ |0 PERI:(DE-600)2834892-8
|a 10.5194/soil-9-365-2023
|g Vol. 9, no. 1, p. 365 - 379
|n 1
|p 365 - 379
|t Soil
|v 9
|x 2199-3971
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1010151/files/soil-9-365-2023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010151
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129553
|a Forschungszentrum Jülich
|b 20
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-217
|1 G:(DE-HGF)POF4-210
|2 G:(DE-HGF)POF4-200
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-2173
|a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2023
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2022-11-08
915 _ _ |0 StatID:(DE-HGF)0700
|2 StatID
|a Fees
|d 2022-11-08
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0561
|2 StatID
|a Article Processing Charges
|d 2022-11-08
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2022-11-08
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
|d 2022-12-20T08:54:27Z
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
|d 2022-12-20T08:54:27Z
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Open peer review
|d 2022-12-20T08:54:27Z
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SOIL-GERMANY : 2022
|d 2023-10-26
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2023-10-26
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-26
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b SOIL-GERMANY : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a OPENSCIENCE
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21