001     1010189
005     20231027114412.0
024 7 _ |a 10.1002/bit.28345
|2 doi
024 7 _ |a 0006-3592
|2 ISSN
024 7 _ |a 0572-6565
|2 ISSN
024 7 _ |a 1097-0290
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03000
|2 datacite_doi
024 7 _ |a 36740737
|2 pmid
024 7 _ |a WOS:000941292000001
|2 WOS
037 _ _ |a FZJ-2023-03000
082 _ _ |a 570
100 1 _ |a Steinhoff, Heiko
|0 0000-0003-0536-2134
|b 0
245 _ _ |a Experimental k S estimation: A comparison of methods for Corynebacterium glutamicum from lab to microfluidic scale
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692255855_17360
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Knowledge about the specific affinity of whole cells toward a substrate, commonly referred to as kS, is a crucial parameter for characterizing growth within bioreactors. State-of-the-art methodologies measure either uptake or consumption rates at different initial substrate concentrations. Alternatively, cell dry weight or respiratory data like online oxygen and carbon dioxide transfer rates can be used to estimate kS. In this work, a recently developed substrate-limited microfluidic single-cell cultivation (sl-MSCC) method is applied for the estimation of kS values under defined environmental conditions. This method is benchmarked with two alternative microtiter plate methods, namely high-frequency biomass measurement (HFB) and substrate-limited respiratory activity monitoring (sl-RA). As a model system, the substrate affinity kS of Corynebacterium glutamicum ATCC 13032 regarding glucose was investigated assuming a Monod-type growth response. A kS of <70.7 mg/L (with 95% probability) with HFB, 8.55 ± 1.38 mg/L with sl-RA, and 2.66 ± 0.99 mg/L with sl-MSCC was obtained. Whereas HFB and sl-RA are suitable for a fast initial kS estimation, sl-MSCC allows an affinity estimation by determining tD at concentrations less or equal to the kS value. Thus, sl-MSCC lays the foundation for strain-specific kS estimations under defined environmental conditions with additional insights into cell-to-cell heterogeneity.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
536 _ _ |a DFG project 427899901 - Filamentöse Co-kulturen: vom Screening zur Bioprozessentwicklung (Co-Pilot) (427899901)
|0 G:(GEPRIS)427899901
|c 427899901
|x 1
536 _ _ |a DFG project 427904493 - Communities of niche-optimized strains (CoNoS) – Ein neues Konzept zur Verbesserung der biotechnologischen Produktion von kleinen Molekülen (427904493)
|0 G:(GEPRIS)427904493
|c 427904493
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Finger, Maurice
|0 0000-0001-7384-8625
|b 1
700 1 _ |a Osthege, Michael
|0 P:(DE-Juel1)174594
|b 2
|u fzj
700 1 _ |a Golze, Corinna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schito, Simone
|0 P:(DE-Juel1)164840
|b 4
|u fzj
700 1 _ |a Noack, Stephan
|0 P:(DE-Juel1)129050
|b 5
700 1 _ |a Büchs, Jochen
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grünberger, Alexander
|0 P:(DE-Juel1)143612
|b 7
|e Corresponding author
773 _ _ |a 10.1002/bit.28345
|g Vol. 120, no. 5, p. 1288 - 1302
|0 PERI:(DE-600)1480809-2
|n 5
|p 1288 - 1302
|t Biotechnology & bioengineering
|v 120
|y 2023
|x 0368-1467
856 4 _ |u https://juser.fz-juelich.de/record/1010189/files/Biotech%20Bioengineering%20-%202023%20-%20Steinhoff.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010189
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129050
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-04-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-04-25
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-04-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-04-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL BIOENG : 2022
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21