001010193 001__ 1010193
001010193 005__ 20231213115704.0
001010193 0247_ $$2doi$$a10.1002/ana.26737
001010193 0247_ $$2ISSN$$a0364-5134
001010193 0247_ $$2ISSN$$a1531-8249
001010193 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03004
001010193 0247_ $$2pmid$$a37402647
001010193 0247_ $$2WOS$$aWOS:001036127300001
001010193 037__ $$aFZJ-2023-03004
001010193 082__ $$a610
001010193 1001_ $$0P:(DE-Juel1)196848$$aPaul, Theresa$$b0$$eFirst author
001010193 245__ $$aInterhemispheric Structural Connectivity Underlies Motor Recovery after Stroke
001010193 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2023
001010193 3367_ $$2DRIVER$$aarticle
001010193 3367_ $$2DataCite$$aOutput Types/Journal article
001010193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701176642_4646
001010193 3367_ $$2BibTeX$$aARTICLE
001010193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010193 3367_ $$00$$2EndNote$$aJournal Article
001010193 520__ $$aObjective: Although ample evidence highlights that the ipsilesional corticospinal tract (CST) plays a crucial role in motor recovery after stroke, studies on cortico-cortical motor connections remain scarce and provide inconclusive results. Given their unique potential to serve as structural reserve enabling motor network reorganization, the question arises whether cortico-cortical connections may facilitate motor control depending on CST damage.Methods: Diffusion spectrum imaging (DSI) and a novel compartment-wise analysis approach were used to quantify structural connectivity between bilateral cortical core motor regions in chronic stroke patients. Basal and complex motor control were differentially assessed.Results: Both basal and complex motor performance were correlated with structural connectivity between bilateral premotor areas and ipsilesional primary motor cortex (M1) as well as interhemispheric M1 to M1 connectivity. Whereas complex motor skills depended on CST integrity, a strong association between M1 to M1 connectivity and basal motor control was observed independent of CST integrity especially in patients who underwent substantial motor recovery. Harnessing the informational wealth of cortico-cortical connectivity facilitated the explanation of both basal and complex motor control.Interpretation: We demonstrate for the first time that distinct aspects of cortical structural reserve enable basal and complex motor control after stroke. In particular, recovery of basal motor control may be supported via an alternative route through contralesional M1 and non-crossing fibers of the contralesional CST. Our findings help to explain previous conflicting interpretations regarding the functional role of the contralesional M1 and highlight the potential of cortico-cortical structural connectivity as a future biomarker for motor recovery post-stroke. ANN NEUROL 2023.
001010193 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001010193 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001010193 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x2
001010193 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010193 7001_ $$0P:(DE-Juel1)196799$$aWiemer, Valerie M.$$b1
001010193 7001_ $$0P:(DE-HGF)0$$aHensel$$b2
001010193 7001_ $$00000-0002-1931-4734$$aCieslak, Matthew$$b3
001010193 7001_ $$aTscherpel, Caroline$$b4
001010193 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b5
001010193 7001_ $$00000-0003-4015-3151$$aGrafton, Scott T.$$b6
001010193 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b7
001010193 7001_ $$0P:(DE-HGF)0$$aVolz, Lukas J.$$b8$$eCorresponding author
001010193 773__ $$0PERI:(DE-600)2037912-2$$a10.1002/ana.26737$$gp. ana.26737$$n4$$p785-797$$tAnnals of neurology$$v94$$x0364-5134$$y2023
001010193 8564_ $$uhttps://juser.fz-juelich.de/record/1010193/files/Annals%20of%20Neurology%20-%202023%20-%20Paul%20-%20Interhemispheric%20Structural%20Connectivity%20Underlies%20Motor%20Recovery%20after%20Stroke.pdf$$yOpenAccess
001010193 8564_ $$uhttps://juser.fz-juelich.de/record/1010193/files/Annals%20of%20Neurology%20-%202023%20-%20Paul%20-%20Interhemispheric%20Structural%20Connectivity%20Underlies%20Motor%20Recovery%20after%20Stroke.gif?subformat=icon$$xicon$$yOpenAccess
001010193 8564_ $$uhttps://juser.fz-juelich.de/record/1010193/files/Annals%20of%20Neurology%20-%202023%20-%20Paul%20-%20Interhemispheric%20Structural%20Connectivity%20Underlies%20Motor%20Recovery%20after%20Stroke.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001010193 8564_ $$uhttps://juser.fz-juelich.de/record/1010193/files/Annals%20of%20Neurology%20-%202023%20-%20Paul%20-%20Interhemispheric%20Structural%20Connectivity%20Underlies%20Motor%20Recovery%20after%20Stroke.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001010193 8564_ $$uhttps://juser.fz-juelich.de/record/1010193/files/Annals%20of%20Neurology%20-%202023%20-%20Paul%20-%20Interhemispheric%20Structural%20Connectivity%20Underlies%20Motor%20Recovery%20after%20Stroke.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001010193 909CO $$ooai:juser.fz-juelich.de:1010193$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196848$$aForschungszentrum Jülich$$b0$$kFZJ
001010193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196799$$aForschungszentrum Jülich$$b1$$kFZJ
001010193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b5$$kFZJ
001010193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
001010193 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001010193 9141_ $$y2023
001010193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN NEUROL : 2022$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANN NEUROL : 2022$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-24$$wger
001010193 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001010193 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001010193 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
001010193 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
001010193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001010193 920__ $$lyes
001010193 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001010193 980__ $$ajournal
001010193 980__ $$aVDB
001010193 980__ $$aUNRESTRICTED
001010193 980__ $$aI:(DE-Juel1)INM-3-20090406
001010193 9801_ $$aFullTexts