001010195 001__ 1010195
001010195 005__ 20230929112543.0
001010195 0247_ $$2doi$$a10.1016/j.cortex.2023.05.011
001010195 0247_ $$2ISSN$$a0010-9452
001010195 0247_ $$2ISSN$$a1973-8102
001010195 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03006
001010195 0247_ $$2pmid$$a37385005
001010195 0247_ $$2WOS$$aWOS:001034325500001
001010195 037__ $$aFZJ-2023-03006
001010195 082__ $$a610
001010195 1001_ $$0P:(DE-HGF)0$$aWang, Qifei$$b0
001010195 245__ $$aFate of the second task in dual-task interference is associated with sensory system interactions with default-mode network
001010195 260__ $$aNew York, NY$$bElsevier$$c2023
001010195 3367_ $$2DRIVER$$aarticle
001010195 3367_ $$2DataCite$$aOutput Types/Journal article
001010195 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692260358_31207
001010195 3367_ $$2BibTeX$$aARTICLE
001010195 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001010195 3367_ $$00$$2EndNote$$aJournal Article
001010195 520__ $$aPsychological refractory period (PRP) effect refers to the delay in responding to the second of two tasks occurring in rapid succession. While all the major models of PRP highlight the importance of the frontoparietal control network (FPCN) in prioritizing the neural processing of the first task, the fate of the second task remains poorly understood. Here, we provide novel neural evidence on how the functional connectivity between sensory systems and the default-mode network (DMN) suspends the neural processing of the second task to ensure the efficient completion of the first task in dual-task situation. In a cross-modal PRP paradigm, a visual task could either precede or follow an auditory task. The DMN was generally deactivated during task performance and selectively coupled with the sensory system underlying the second task subjected to the PRP effect. Specifically, the DMN showed neural coupling with the auditory system when the auditory task came after the visual task, and with the visual system vice versa. More critically, the strength of the DMN-Sensory coupling correlated negatively with the size of the PRP effect: the stronger the coupling, the shorter the PRP. Therefore, rather than being detrimental to the dual-task performance, temporary suspension of the second task, via the DMN-Sensory coupling, surprisingly guaranteed the efficient completion of the first task by reducing the interference from the second task. Accordingly, the entry and processing of the second stimuli in the central executive system were speeded up as well.
001010195 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001010195 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001010195 7001_ $$0P:(DE-Juel1)180341$$aYang, Yuqian$$b1
001010195 7001_ $$0P:(DE-HGF)0$$aWang, Ke$$b2
001010195 7001_ $$0P:(DE-HGF)0$$aShen, Lu$$b3
001010195 7001_ $$0P:(DE-HGF)0$$aChen, Qi$$b4$$eCorresponding author
001010195 773__ $$0PERI:(DE-600)2080335-7$$a10.1016/j.cortex.2023.05.011$$gVol. 166, p. 154 - 171$$p154 - 171$$tCortex$$v166$$x0010-9452$$y2023
001010195 8564_ $$uhttps://juser.fz-juelich.de/record/1010195/files/PDF%20not%20open%20access%20.pdf$$yRestricted
001010195 8564_ $$uhttps://juser.fz-juelich.de/record/1010195/files/POST%20PRINT.docx$$yOpenAccess
001010195 909CO $$ooai:juser.fz-juelich.de:1010195$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001010195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180341$$aForschungszentrum Jülich$$b1$$kFZJ
001010195 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001010195 9141_ $$y2023
001010195 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
001010195 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-25
001010195 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001010195 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
001010195 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCORTEX : 2022$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2023-08-28
001010195 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-28
001010195 920__ $$lyes
001010195 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001010195 980__ $$ajournal
001010195 980__ $$aVDB
001010195 980__ $$aUNRESTRICTED
001010195 980__ $$aI:(DE-Juel1)INM-3-20090406
001010195 9801_ $$aFullTexts