Hauptseite > Publikationsdatenbank > Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer > print |
001 | 1010196 | ||
005 | 20230929112543.0 | ||
024 | 7 | _ | |a 10.1007/s11060-023-04367-7 |2 doi |
024 | 7 | _ | |a 0167-594x |2 ISSN |
024 | 7 | _ | |a 0167-594X |2 ISSN |
024 | 7 | _ | |a 1573-7373 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03007 |2 datacite_doi |
024 | 7 | _ | |a 37382806 |2 pmid |
024 | 7 | _ | |a WOS:001022079900002 |2 WOS |
037 | _ | _ | |a FZJ-2023-03007 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Meißner, Anna-Katharina |0 0000-0003-4150-7265 |b 0 |e Corresponding author |
245 | _ | _ | |a Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer |
260 | _ | _ | |a Dordrecht [u.a.] |c 2023 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1694755908_17124 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a „Open access publication funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491111487“ |
520 | _ | _ | |a BackgroundThe expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC.Patients and methodsFifty-three NSCLC patients with brain metastases from two academic neuro-oncological centers (group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evaluation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiomics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses.ResultsAn intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients (50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), and an AUC of 0.84 in the external test data (group 2).ConclusionThe developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression in patients with brain metastases secondary to NSCLC with high accuracy. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Gutsche, Robin |0 P:(DE-Juel1)181076 |b 1 |u fzj |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 2 |u fzj |
700 | 1 | _ | |a Kocher, Martin |0 P:(DE-Juel1)173675 |b 3 |u fzj |
700 | 1 | _ | |a Jünger, Stephanie T. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Eich, Marie-Lisa |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Nogova, Lucia |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Araceli, Tommaso |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Schmidt, Nils Ole |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Ruge, Maximilian I. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Goldbrunner, Roland |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Proescholdt, Martin |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Grau, Stefan |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Lohmann, Philipp |0 P:(DE-Juel1)145110 |b 13 |u fzj |
773 | _ | _ | |a 10.1007/s11060-023-04367-7 |g Vol. 163, no. 3, p. 597 - 605 |0 PERI:(DE-600)2007293-4 |n 3 |p 597 - 605 |t Journal of neuro-oncology |v 163 |y 2023 |x 0167-594x |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1010196/files/PDF.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1010196 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)181076 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)173675 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)145110 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-08 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-08 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2022-11-08 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-20 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NEURO-ONCOL : 2022 |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-08-20 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-20 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|