001     1010204
005     20240712112852.0
024 7 _ |a 10.1145/3599733.3600247
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03013
|2 datacite_doi
024 7 _ |a WOS:001058264100004
|2 WOS
037 _ _ |a FZJ-2023-03013
100 1 _ |a Pütz, Sebastian
|0 0009-0009-8468-4166
|b 0
|e Corresponding author
111 2 _ |a e-Energy '23: The 14th ACM International Conference on Future Energy Systems
|c Orlando FL
|d 2023-06-20 - 2023-06-23
|w USA
245 _ _ |a Regulatory Changes in German and Austrian Power Systems Explored with Explainable Artificial Intelligence
260 _ _ |c 2023
|b ACM New York, NY, USA
295 1 0 |a Companion Proceedings of the 14th ACM International Conference on Future Energy Systems - ACM New York, NY, USA, 2023. - ISBN 9798400702273 - doi:10.1145/3599733.3600247
300 _ _ |a 26-31
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1706530940_32233
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a A stable supply of electrical energy is essential for the functioning of our society. Therefore, energy and balancing markets of power grids are strictly regulated. With changes in technology, the economy and society, these regulations are also constantly adapted. However, whether these regulatory changes lead to the intended results is not easy to assess. Could eXplainable Artificial Intelligence (XAI) models distinguish regulatory settings and support the understanding of the effects of these changes? In this article, we explore two examples of regulatory changes: The splitting of the German-Austrian bidding zone and changes in the pricing schemes of the German balancing energy market. We find that boosted tree models and feedforward neural networks before and after a regulatory change differ in their respective parametrizations. Using Shapley additive explanations, we reveal model differences, e.g., in terms of feature importance, and identify key features of these distinct models. With this study, we demonstrate how XAI can be applied to investigate system changes in power systems.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Kruse, Johannes
|0 P:(DE-Juel1)179250
|b 1
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 2
700 1 _ |a Hagenmeyer, Veit
|0 0000-0002-3572-9083
|b 3
700 1 _ |a Schäfer, Benjamin
|0 0000-0003-1607-9748
|b 4
773 _ _ |a 10.1145/3599733.3600247
856 4 _ |u https://doi.org/10.1145/3599733.3600247
856 4 _ |u https://juser.fz-juelich.de/record/1010204/files/2303.17455.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1010204
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179250
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21