001010210 001__ 1010210
001010210 005__ 20240712112821.0
001010210 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03019
001010210 037__ $$aFZJ-2023-03019
001010210 041__ $$aEnglish
001010210 1001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b0$$eCorresponding author
001010210 1112_ $$a20th International Conference on Carbon Dioxide Utilization$$cBari$$d2023-06-25 - 2023-06-30$$gICCDU$$wItaly
001010210 245__ $$a<i>In operando</i> NMR investigations of electrolyte chemistry during CO<sub>2</sub> electrolysis
001010210 260__ $$c2023
001010210 3367_ $$033$$2EndNote$$aConference Paper
001010210 3367_ $$2DataCite$$aOther
001010210 3367_ $$2BibTeX$$aINPROCEEDINGS
001010210 3367_ $$2DRIVER$$aconferenceObject
001010210 3367_ $$2ORCID$$aLECTURE_SPEECH
001010210 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1698231506_10049$$xPlenary/Keynote
001010210 520__ $$aThe electrolytic reduction of CO2 in aqueous media is a powerful method for the large scale utilization of carbon dioxide. There have been large advances in catalyst and cell design, but only little progress has been made regarding in operando and in situ methods for the research of chemical and physical processes taking during electrolysis. NMR spectroscopy is a powerful method for the investigation of chemical systems, and has been applied regularly for the study of catalytically reactions. In general, NMR is thought to be incompatible with electrochemical reactors, i.e. electrolysis cells, due to the distortion of the main magnetic and radio frequency field by conductive cell components. In this study, we overcame these challenges and developed an in operando electrolysis setup which enables NMR investigations of the electrolytic CO2 reduction, which is compatible with standard hardware and pulse sequences. The setup was applied to the examination of physical and chemical properties of solvated CO2 and a commonly used bicarbonate salt electrolyte during three electrochemical stages with increasingly negative potential. In addition to acquiring 13C NMR spectra over course of the electrolysis, T1 and T2 relaxation as well as 1D exchange spectroscopy (EXSY) experiments were utilized in order to learn about the dynamics and equilibrium reactions of the involved species. It was found that in a concentrated electrolyte solution, the electrolyte anions and cations exist both as free ions and ion pairs, where the exchange rate between both forms decreases with increasingly negative potential. The effect of the potential on the exchange rate was confirmed by repeating the experiments at different magnetic field strengths. Furthermore, it was shown via analysis of the relaxation data that solvated CO2 is preferentially in a dynamic equilibrium with bicarbonate anions in form of an ion pair, and that the CO2/bicarbonate equilibrium reaction rate increases with increasingly stable ion pairs in solution. Finally, a catalytic mechanism was proposed on this basis, where the electrolyte cation stabilizes the transition of bicarbonate to CO2 comparable to the enzyme carbonic anhydrase in biological systems.
001010210 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001010210 536__ $$0G:(GEPRIS)390919832$$aDFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x1
001010210 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001010210 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1
001010210 7001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b2
001010210 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001010210 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
001010210 8564_ $$uhttps://juser.fz-juelich.de/record/1010210/files/Presentation%20ICCDU%20Sven%20Jovanovic.pdf$$yOpenAccess
001010210 909CO $$ooai:juser.fz-juelich.de:1010210$$pdriver$$pVDB$$popen_access$$popenaire
001010210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b0$$kFZJ
001010210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
001010210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b2$$kFZJ
001010210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001010210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001010210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
001010210 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
001010210 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001010210 9141_ $$y2023
001010210 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001010210 920__ $$lyes
001010210 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001010210 9801_ $$aFullTexts
001010210 980__ $$aconf
001010210 980__ $$aVDB
001010210 980__ $$aUNRESTRICTED
001010210 980__ $$aI:(DE-Juel1)IEK-9-20110218
001010210 981__ $$aI:(DE-Juel1)IET-1-20110218