In operando NMR investigations of electrolyte chemistry during CO₂ electrolysis ICCDU | 26th June 2023 I S. Jovanovic, P. Jakes, S. Merz, R.-A. Eichel, J. Granwehr #### **Motivation** **Local pH** and **electrolyte chemistry** play a critical role for CO₂ electrolysis! - Local pH affects catalytic pathways - CO₂/HCO₃ equilibrium affects CO₂ resupply - Cation chemistry affects product selectivity #### **Motivation** **Local pH** and **electrolyte chemistry** play a critical role for CO₂ electrolysis! Investigation of local electrolysis phenomena requires in operando methods! #### Overview In Operando NMR spectroscopy - Benefits - 1. Wide toolset of experiments to investigate system interactions - 2. Straightforward assessment of chemical species - 3. Selective studies of molecular properties - Challenges - 1. Magnetic field distorationby conductive cell components - 2. Amplification of external RF noise by cables & wires - 3. Compatibility between equipment #### In operando Electrolysis Setup #### Experimental In operando Experimental Procedure Increasingly negative potential Increasing reaction rate Open Circuit Voltage U≈ -0.04 V Underpotential U = -1.10 V Electrolysis Conditions U≈ -1.4 V Ag Working Electrode 1M K/NaH¹³CO₃(aq) Electrolyte Saturated with ¹³CO₂ - 1. ¹³C/²³Na Spectra recording for 12 hours (10 min resolution) - **2.** T_1 & T_2 Relaxation Experiments - 3. Exchange Experiment (CO₂/HCO₃⁻) #### Observation #1 13C Signal Evolution ¹³C spectrum of CO₂ saturated electrolyte #### Observation #1 13C Signal Evolution **OCV** ### Observation #1 13C Signal Evolution CO₂ signal only decreases in intensity, shape stays constant OCV # Observation #1 13C Signal Evolution CO₂ signal only decreases in intensity, shape stays constant HCO₃⁻ signal splits during underpotential and electrolysis stage Observation #1 13C Signal Evolution Observation #1 13C Signal Evolution Artifact distortion of main magnetic field B₀ Frequency [ppm] #### Observation #2 Magnetic field dependent effects #### Observation #2 Magnetic field dependent effects #### Observation #3 T_1 relaxation constants #### Observation #3 T_1 relaxation constants #### Observation #3 T_1 relaxation constants High mobility HCO₃⁻ **Medium mobility HCO₃**⁻ Low mobility HCO₃⁻ # Discussion HCO₃⁻ Environments #### Na⁺/HCO₃⁻ must be... - 1. in two chemical environments - 2. that are exchanging in solution - 3. and exhibit different mobilites # Discussion HCO₃⁻ Environments #### Na⁺/HCO₃⁻ must be... - 1. in two chemical environments - 2. that are exchanging in solution - 3. and exhibit different mobilites #### **Conclusion Potential Dependent Electrolyte Chemistry** OCV **0.04 v** Underpot. –1.1 V Electrolysis –1.4 V Exchange rate between IP and FI decreases with increasingly negative potential #### Conclusion Potential Dependent Electrolyte Chemistry Exchange rate between IP and FI decreases with increasingly negative potential Life time of IPs affects CO_2 resupply by catalyzing the HCO_3^- dehydration # IEK-9: Fundamental Electrochemistry Prof. Rüdiger-A. Eichel Head of Institute Prof. Josef Granwehr Head of Department Michael Schatz PhD Candidate