

In operando NMR investigations of electrolyte chemistry during CO₂ electrolysis

ICCDU | 26th June 2023 I S. Jovanovic, P. Jakes, S. Merz, R.-A. Eichel, J. Granwehr

Motivation

Local pH and **electrolyte chemistry** play a critical role for CO₂ electrolysis!

- Local pH
 affects catalytic pathways
- CO₂/HCO₃ equilibrium
 affects CO₂ resupply
- Cation chemistry
 affects product selectivity

Motivation

Local pH and **electrolyte chemistry** play a critical role for CO₂ electrolysis!

Investigation of local electrolysis phenomena requires in operando methods!

Overview In Operando NMR spectroscopy

- Benefits
- 1. Wide toolset of experiments to investigate system interactions
- 2. Straightforward assessment of chemical species
- 3. Selective studies of molecular properties

- Challenges
- 1. Magnetic field distorationby conductive cell components
- 2. Amplification of external RF noise by cables & wires
- 3. Compatibility between equipment

In operando Electrolysis Setup

Experimental In operando Experimental Procedure

Increasingly negative potential Increasing reaction rate

Open Circuit Voltage U≈ -0.04 V Underpotential U = -1.10 V Electrolysis Conditions U≈ -1.4 V

Ag Working Electrode

1M K/NaH¹³CO₃(aq)

Electrolyte

Saturated with ¹³CO₂

- 1. ¹³C/²³Na Spectra recording for 12 hours (10 min resolution)
- **2.** T_1 & T_2 Relaxation Experiments
- 3. Exchange Experiment (CO₂/HCO₃⁻)

Observation #1 13C Signal Evolution

¹³C spectrum of CO₂ saturated electrolyte

Observation #1 13C Signal Evolution

OCV

Observation #1 13C Signal Evolution

CO₂ signal only decreases in intensity, shape stays constant

OCV

Observation #1 13C Signal Evolution

CO₂ signal only decreases in intensity, shape stays constant

HCO₃⁻ signal splits during underpotential and electrolysis stage

Observation #1 13C Signal Evolution

Observation #1 13C Signal Evolution

Artifact distortion of main magnetic field B₀

Frequency [ppm]

Observation #2 Magnetic field dependent effects

Observation #2 Magnetic field dependent effects

Observation #3 T_1 relaxation constants

Observation #3 T_1 relaxation constants

Observation #3 T_1 relaxation constants

High mobility HCO₃⁻

Medium mobility HCO₃⁻

Low mobility HCO₃⁻

Discussion HCO₃⁻ Environments

Na⁺/HCO₃⁻ must be...

- 1. in two chemical environments
- 2. that are exchanging in solution
- 3. and exhibit different mobilites

Discussion HCO₃⁻ Environments

Na⁺/HCO₃⁻ must be...

- 1. in two chemical environments
- 2. that are exchanging in solution
- 3. and exhibit different mobilites

Conclusion Potential Dependent Electrolyte Chemistry

OCV **0.04 v**

Underpot. –1.1 V

Electrolysis –1.4 V

Exchange rate between IP and FI decreases with increasingly negative potential

Conclusion Potential Dependent Electrolyte Chemistry

Exchange rate between IP and FI decreases with increasingly negative potential

Life time of IPs affects CO_2 resupply by catalyzing the HCO_3^- dehydration

IEK-9: Fundamental Electrochemistry

Prof. Rüdiger-A. Eichel Head of Institute

Prof. Josef Granwehr Head of Department

Michael Schatz
PhD Candidate

